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Abstract 

Background:  Relatively inexpensive, stable Schiff bases, namely 3-((4-hydroxybenzylidene)amino)-2-methylquina‑
zolin-4(3H)-one (BZ3) and 3-((4-(dimethylamino)benzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ4), were 
employed as highly efficient inhibitors of mild steel corrosion by corrosive acid.

Findings:  The inhibition efficiencies were estimated based on weight loss method. Moreover, scanning electron 
microscopy was used to investigate the inhibition mechanism. The synthesized Schiff bases were characterized by 
Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and micro-elemental analysis. The 
inhibition efficiency depends on three factors: the amount of nitrogen in the inhibitor, the inhibitor concentration and 
the inhibitor molecular weight.

Conclusions:  Inhibition efficiencies of 96 and 92% were achieved with BZ4 and BZ3, respectively, at the maximum 
tested concentration. Density functional theory calculations of BZ3 and BZ4 were performed to compare the effects 
of hydroxyl and N,N-dimethylamino substituents on the inhibition efficiency, providing insight for designing new 
molecular structures that exhibit enhanced inhibition efficiencies.
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Introduction
Anti-corrosion coatings are generally employed to inhibit 
the average of corrosion and increase longevity of the 
mild steel. A broad range of organic adsorption inhibitors 
presently applied in the corrosion domain are expensive 
[1, 2]. Electron pairs and negative ions are transferred 
from the inhibitors to the metal d orbitals, resulting in the 
formation of coordination complexes with specific geom-
etries, such as square planar, tetrahedral or octahedral 
[3]. Thus, inhibitor molecules improve mild steel resist-
ance to corrosive solutions by adsorbing on the metal sur-
face [4–7] and forming a barrier that blocks the mild steel 
active sites [8–10]. Inhibitor adsorption on mild steel 
is affected by the nature of the mild steel, type of elec-
trolyte and molecular structure of the inhibitor [11, 12]. 
Inhibitors molecules adsorbed on surface of mild steel, 
forming a barrier and consequently preventing reactions 

(cathodic or anodic) from processing at the surface of 
mild steel. These inhibitors could react with the iron 
atom at the mild steel surface to form in-organic com-
plexes, blocking the surface of mild steel [13]. Quantum 
chemical investigations have extensively been employed 
for correlating the inhibitor molecular structures and the 
inhibition impacts [14]. To extend our previous work on 
designing novel inhibitor molecules [15–24], the Schiff 
bases 3-((4-hydroxybenzylidene)amino)-2-methylquina-
zolin-4(3H)-one (BZ3) and 3-((4-(dimethylamino)ben-
zylidene)amino)-2-methylquinazolin-4(3H)-one (BZ4) 
were synthesized. Their molecular structures were deter-
mined by elemental analysis; carbon, hydrogen and nitro-
gen (mass fractions of CHN) analysis, Fourier transform 
infrared FTIR spectroscopy and nuclear magnetic reso-
nance (NMR) spectroscopy. The abilities of these mole-
cules to inhibit mild steel corrosion in an acidic solution 
were determined by the weight loss method and scanning 
electron microscopy (SEM). To elucidate the inhibition 
mechanism and the relationship between the structure 
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and inhibition efficiency of the inhibitor, quantum chem-
ical calculations of BZ3 and BZ4 were performed.

Experimental
Materials
All chemical compounds were purchased from Sigma-
Aldrich/Malaysia. Fourier transform infrared (FTIR) 
spectra were recorded on a Shimadzu FTIR-8300 spec-
trometer. Elemental analyses were performed using a 
Carlo Erba 5500 elemental analysis;  carbon,  hydrogen 
and nitrogen (CHN). Nuclear magnetic resonance spec-
tra were obtained using a Bruker Spectrospin instrument 
equipped with 300 MHz UltraShield magnets. DMSO-d6 
and TMS were used as the solvent and internal standard, 
respectively.

Synthesis of corrosion inhibitors
An ethanolic solution of 3-amino-2-methylquinazolin-
4(3H)-one (0.005  mol), the appropriate carbonyl com-
pound (0.005  mol) and a few drops of acetic acid were 
refluxed for 8 h. After cooling, the mixture was filtered, 
and the obtained solid was subsequently washed and 
recrystallized from hot ethanol. BZ3: yield 72%, mp 204–
206  °C. FTIR: 3189 (br, aromatic O–H), 1704.3 (C=O), 
1609.0 (C=N). 1H NMR: 2.37 (s, 3H, CH3), 6.84–7.01 
(m, 1H, Ar–H), 5.32 (s, 1H, OH), 9.33 (d, 1H, H–C=N). 
Elemental analysis (CHN): C 69.11% (68.81%), H 4.91% 
(4.69%), N 14.82 (15.05). BZ4: yield 68%, mp 191–193 °C. 
FTIR: 3047.4 (aromatic C–H), 1699.6 (C=O), 1611.3 
(C=N). 1H NMR: 2.410 (s, 3H, CH3), 7.01–7.32 (m, 1H, 
Ar–H), 8.99 (d, 1H, H–C=N). Elemental analysis (CHN): 
C 70.90% (70.57%), H 6.03% (5.92%), N 18.78 (18.29%).

Corrosion tests
The mild steel specimens that were utilized as electrodes 
in this study were supplied by Metal Samples Company. 
The mild steel composition was 99.21% Fe, 0.21% C, 
0.38% Si, 0.09% P, 0.05% S, 0.05% Mn and 0.01% Al. The 
mild steel effective area was 4.5 cm2, and the surface was 
cleaned according to ASTM G1-03 [25–27]. In a typical 
procedure, an mild steel sample was suspended (in dupli-
cate) in 200  mL of a corrosive solution with or without 
an inhibitor (BZ3 and BZ4). The inhibitor concentra-
tions studied were 0.001, 0.05, 0.10, 0.15, 0.2.0, 0.25 and 
0.50 g/L. After a given amount of time (1, 2, 3, 4, 5, 10, 24, 
48 and 72 h), the sample was washed, dried, and weighed. 
The inhibition efficiencies (IEs, %) were calculated using 
Eq. 1:

(1)IE (%) =

(

1−
W2

W1

)

× 100

where W1 and W2 are the weight losses of the mild steel 
specimens in the absence and presence of an inhibitor, 
respectively.

Calculation method
Ground-state geometry optimizations were performed 
without symmetry constraints using Gaussian 09, 
Revision A.02 [28]. The hybrid functional B3LYP was 
employed for all the geometry optimizations and high-
est occupied and lowest unoccupied molecular orbital 
energy calculations [29, 30].

Results and discussion
Synthesis
The Schiff bases BZ3 and BZ4 were readily synthesized 
in excellent yields by refluxing 3-amino-2-methylquina-
zolin-4(3H)-one with 4-hydroxybenzaldehyde and 
N,N-dimethyl-4-aminobenzaldehyde, respectively. The 
molecular weights of BZ3 and BZ4 were estimated to 
be 279 and 306, respectively, from the chemical formu-
las (C16H13N3O2 and C18H18N4O, respectively) and were 
confirmed by spectroscopic techniques. No hydrazide 
absorption bands were observed in the BZ3 and BZ4 
FTIR spectra. The BZ3 1H NMR (nuclear magnetic reso-
nance) spectrum exhibited singlets at δ 5.32 ppm, due to 
the OH proton, and δ 2.37 ppm (3H), due to the methyl 
group. In the BZ4 1H NMR spectrum, only one singlet 
was observed at δ 2.410 (3H) due to the methyl group. 
The Schiff bases were synthesized from 3-amino-2-meth-
ylquinazolin-4(3H)-one according to the procedure illus-
trated in Scheme 1.

Weight loss results
In industry, the use of inhibitors is one of the major eco-
nomical methods for efficiently safeguarding mild steel 
surfaces against corrosion [31]. Organic inhibitors are 
the predominant compounds used in the oil industry 
because they can act as a barrier for mild steel against 
corrosive media. Most of these inhibitors are heterocy-
clic molecules, such as pyridine, imidazoline and azoles 
[32–34], or polymers [35, 36].

Concentration effect
The weight loss method was used to calculate the inhi-
bition efficiencies of, BZ3 and BZ4 at various concentra-
tions (0.05, 0.1, 0.15, 0.2, 0.25 and 0.5 g/L) for (1, 2, 3, 4, 
5, 10, 24, 48 and 72  h) and 303  K for mild steel in cor-
rosive media. The BZ3 and BZ4 results, which are shown 
in Figs.  1 and 2, respectively, indicate that these inhibi-
tors reduced mild steel corrosion in corrosive media. For 
all the inhibitors, the inhibition efficiency increased with 
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increasing concentration, reaching a maximum at the 
highest tested concentration.

Temperature effect
To determine the effect of the temperature on the inhibi-
tion efficiency, corrosion experiments were performed in 
the absence or presence of BZ4 at various temperatures 
(303, 313, 323 and 333  K). The inhibition performance 
was enhanced by increasing the BZ4 concentration and 
decreasing the temperature. Figure  3 shows the impact 
of the temperature on the BZ4 inhibition efficiency. The 
heat of adsorption for BZ4 adsorption on mild steel 
was negative, indicating that it is an exothermic pro-
cess, which explains the decrease in the efficiency with 
increasing temperature.

Scheme 1  Inhibitors synthesis procedure

Fig. 1  BZ3 inhibition efficiency for mild steel as a function of time at 
various inhibitor concentrations and 303 K

Fig. 2  BZ4 inhibition efficiency for mild steel as a function of time at 
various inhibitor concentrations and 303 K

Fig. 3  BZ4 inhibition efficiency as a function of the inhibitor concen‑
tration at various temperatures
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Proposed inhibition mechanism
The efficiencies of the investigated inhibitors BZ3 or BZ4 
could rely on charges or molecular weights, in addition to 
the nature of bonds of the metal and its capability to pro-
duce complexes. Figure  4 shows the display complexes 
formed between the mild steel surface atoms and the 
investigated inhibitors.

The inhibition mechanism of the tested inhibitors 
can be explained by valence bond theory (VBT). The 
Fe2+ electron configuration is [Ar]3d6. The 3d orbit-
als mix with the unoccupied 4s and 4p orbitals to form 
sp3 or d2sp3 hybrid orbitals that might be suitably ori-
ented toward the nitrogen or oxygen non-bonding elec-
tron pairs in the inhibitors. When these Fe and inhibitor 
orbitals overlap, tetrahedral, square planar or octahedral 
complexes in which the metal has a filled valence shell are 
formed. The inhibition mechanism can also be explained 
in terms of crystal field theory (CFT) or molecular orbital 
theory (MOT). When the inhibitor molecules complex to 
the metal atoms, coordination bonds form via electron 
transfer from the inhibitor nitrogen atoms to the metal 
d orbitals.

Scanning electron microscopy
The mild steel surface was analyzed by SEM after immer-
sion in 1.0 M HCl with and without 0.5 g/L BZ4 for 3 h 
at 30 °C, as shown in Fig. 5. After immersion in the HCl 
solution in the absence of BZ4, the surface appeared to be 
damaged due to the high iron dissolution rate in corro-
sive media. However, a barrier was observed on the mild 
steel surface when BZ4 was added to the solution. This 
result shows that BZ4 adsorbed on the mild steel surface, 
protecting it from corrosion by hydrochloric acid.

DFT studies
To elucidate the significant electronic effects of the 
substituents, the two inhibitors with strongly electron-
donating groups, namely 3-((4-hydroxybenzylidene)
amino)-2-methylquinazolin-4(3H)-one (BZ3) with a 
hydroxyl (–OH) group and 3-((4-(dimethylamino)ben-
zylidene)amino)-2-methylquinazolin-4(3H)-one (BZ4) 
with an N,N-dimethylamino (–NMe2) group, were stud-
ied by DFT. Two additional isomer models of both BZ3 
and BZ4 were also investigated [37].

Fig. 4  Inhibition mechanism

Fig. 5  SEM images of mild steel after immersion in a 1.0 M HCl solution a without and b with BZ4 at 30 °C
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3‑((4‑Hydroxybenzylidene)
amino)‑2‑methylquinazolin‑4(3H)‑one (BZ3)
The hydroxyl group on the benzene ring in BZ3 is in 
the C-4 position but could be moved to the C-2 (BZ3a) 
and C-3 (BZ3b). For all three positions, the contribution 
of the substituent to both the HOMO and LUMO was 
similar with only small variations, as shown in Fig. 6. The 
optimized geometries of these three isomers are also pre-
sented in Fig. 6, and the electronic energies are listed in 
Table 1.

The ionization potential (I) and electron affinity (A) 
were calculated according to Koopmans’ theorem [38, 
39] as follows:

I = − EHOMO; A = − ELUMO
The method of Al-Amiery et  al. [38, 39] was used to 

calculate the BZ3 inhibition efficiency (%) from the fol-
lowing equations, and the results are given in Table 2:

(2)Iadd% =
IBZ3 − IX−BZ3

IBZ3
× 100%

Fig. 6  Optimized geometries, HOMOs and LUMOs of BZ3, BZ3a and BZ3b obtained with rB3LYP/6-31G(d,p)
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where Iadd% is the percent change in the ionization 
potential of model x-BZ3 relative to that of BZ3, and 
Ieadd% and Ietheory% are the corresponding additional and 
theoretical inhibition efficiencies, respectively.

These results demonstrate that moving the hydroxyl 
group to the meta position (BZ3b) led to a decrease in the 
inhibition efficiency to 77.81%, whereas moving it to the 
ortho position (BZ3a) resulted in an increase in the inhi-
bition efficiency to 96.11%. A comparison of the BZ3 and 
BZ3a inhibition efficiencies (96.11% vs. 92%) reveals that 
this change in the substituent position clearly enhanced 
the inhibition efficiency.

3‑((4‑(Dimethylamino)benzylidene)
amino)‑2‑methylquinazolin‑4(3H)‑one (BZ4)
The N,N-dimethylamine group on the benzene ring in 
BZ4 is in the C-4 position but could be moved to the C-2 
(BZ4a) and C-3 (BZ4b) positions. For all three positions, 
the contribution of the substituent to both the HOMO 
and LUMO was similar with only small variations, as 
shown in Fig. 7. The optimized geometries of these three 
isomers are also presented in Fig.  7, and the electronic 
energies are listed in Table 3.

The ionization potential (I) and electron affinity (A) 
were calculated according to Koopmans’ theorem [38] as 
follows:

I = − EHOMO; A = − ELUMO
The inhibition efficiencies of the BZ4 isomers calcu-

lated using Eqs. 2–4 are given in Table 4.

(3)Ieadd% = Iadd% × IeBZ3%

(4)Ietheory% = IBZ3% + Ieadd%

These results demonstrate that moving the N,N-
dimethylamino substituent to the meta position (BZ4b) 
led to a decrease in the inhibition efficiency to 85.27%, 
whereas moving it to the ortho position (BZ4a) resulted 
in an increase in the inhibition efficiency to 94.98%. This 
result along with that for BZ4 (96%) reveals that an excel-
lent inhibition efficiency could be achieved with BZ4 
isomers.

Groups which were withdrawing electron by reso-
nance effect will decrease density of electrons specifically 
at positions 2, 4 and 6, leaving position 3 and position 5 
as the ones with relatively higher efficiency, thus these 
kinds of groups were (position-3) meta directors. Also, 
the groups that have unoccupied pair of electrons, like 
the  amino  group (BZ4) or hydroxyl group (BZ3), are 
strong  active  and  ortho (BZa)/para-directors (BZ) thus 
efficient groups donate the unoccupied electrons to 
the pi system, making a negative charge on ortho (posi-
tion-2) and para (position-4)positions. These positions 
have the maximum activities toward electron-poor elec-
trophile. The highest electron density have been located 
on ortho/para positions, although. An important point; 
steric hindrance as in compound BZ4 that have 2-methyl 
groups on nitrogen atom (N,N-dimethyl) decrease the 
reactivity. The final result of the electrophilic aromatic 
substitution might thus be hard to predict, and it is usu-
ally only established by doing the reaction and determin-
ing the ratio of ortho versus para substitution.

Finally, from Table 4, BZ4a was less active as inhibitor 
from BZ due to steric hindrance. From Table 2, the best 
position was on C-2 (ortho-position) for the compound 
BZ3a and no steric hindrance.

Conclusions
Mild steel corrosion inhibitors were synthesized, and 
their structures were fully characterized by spectro-
scopic techniques. Their abilities to inhibit mild steel 
corrosion in a 1.0  M HCl solution at 303, 313, 323 and 
333 K were subsequently studied. The inhibitors, namely 
3-((4-hydroxybenzylidene)amino)-2-methylquinazolin-
4(3H)-one (BZ3) and 3-((4-(dimethylamino)benzylidene)
amino)-2-methylquinazolin-4(3H)-one (BZ4), exhibited 
excellent corrosion inhibition performances, and maxi-
mum inhibition efficiencies of 96 and 92% were observed 

Table 1  Calculated HOMO and  LUMO energies, energy gaps, ionization potentials, and  electron affinities (eV) for  BZ3, 
BZ3a and BZ3b obtained with rB3LYP/6-31G(d,p)

Molecule EHOMO ELUMO Energy gap (ELUMO − EHOMO) Ionization potential (I) Electron affinity (A)

BZ3 − 8.787 − 2.861 5.926 8.787 2.861

BZ3a − 8.792 − 2.882 5.910 8.792 2.882

BZ3b − 8.757 − 2.903 5.854 8.757 2.903

Table 2  Theoretical inhibition efficiencies (%) for  BZ3, 
BZ3a and BZ3b

Compound Inhibition efficiency (%)

Theoretical (Ietheory) Experimental

BZ3 92.75 92

BZ3a 96.11 –

BZ3b 77.81 –
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for BZ4 and BZ3, respectively, at an inhibitor concentra-
tion of 5  mM. The inhibition efficiency increased with 
increasing inhibitor concentration, whereas it decreased 

with increasing temperature. The SEM images show 
that BZ4 might form a protective film on the mild steel 
surface.

Fig. 7  Optimized geometries, HOMOs and LUMOs of BZ4, BZ4a and BZ4b obtained with rB3LYP/6-31G(d,p)

Table 3  Calculated HOMO and  LUMO energies, energy gaps, ionization potentials, and  electron affinities (eV) for  BZ4, 
BZ4a and BZ4b obtained with rB3LYP/6-31G(d,p)

Molecule EHOMO ELUMO Energy gap (ELUMO − EHOMO) Ionization potential (I) Electron affinity (A)

BZ4 − 8.787 − 2.855 5.932 8.787 2.855

BZ4a − 8.843 − 2.855 5.988 8.843 2.855

BZ4b − 8.646 − 2.919 5.725 8.646 2.919
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Quantum chemical calculations were performed to elu-
cidate the relationship between the electronic structures 
of the inhibitors and their corrosion inhibition efficien-
cies. In particular, the rB3LYP/6-31G(d,p) calculations 
of BZ3 and BZ4 isomers revealed that a substituent in 
the meta position on the corrosion inhibitor molecule 
negatively affected the inhibition efficiency, whereas a 
substituent in the para position enhanced the inhibition 
efficiency. Compared to other corrosion inhibitors, these 
molecules exhibited higher inhibition efficiencies. The 
theoretical and experimental inhibition efficiencies of the 
studied inhibitors were in excellent agreement, demon-
strating the reliability of the method employed.
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