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Abstract 

Background:  Plants contain a myriad of metabolites which exhibit diverse biological activities. However, in-depth 
analyses of these natural products with current analytical platforms remains an undisputed challenge due to the mul-
tidimensional chemo-diversity of these molecules, amplified by both isomerization and conjugation. In this study, we 
looked at molecules such as hydroxyl-cinnamic acids (HCAs), which are known to exist as positional and geometrical 
isomers conjugated to different organic acids namely quinic- and isocitric acid.

Objective:  The study aimed at providing a more defined distinction between HCA conjugates from Amaranthus 
viridis and Moringa oleifera, using mass spectrometry (MS) approaches.

Methods:  Here, we used a UHPLC–MS/MS targeted approach to analyze isobaric HCA conjugates extracted from the 
aforementioned plants.

Results:  Mass spectrometry results showed similar precursor ions and fragmentation pattern; however, distinct differ-
ences were seen with ions at m/z 155 and m/z 111 which are associated with isocitric acid conjugates.

Conclusion:  Our results highlight subtle differences between these two classes of compounds based on the MS 
fingerprints, enabling confidence differentiation of the compounds. Thus, these findings provide a template reference 
for accurate and confident annotation of such compounds in other plants.

Keywords:  Amaranthus viridis, Hydroxyl-cinnamic acid, Hydroxycinnamoyl-isocitric acid, Hydroxycinnamoyl-quinic 
acid, Mass spectrometry, Moringa oleifera
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Background
Plants are a source of various natural compounds with a 
wide spectrum of bioactivities. These compounds are cat-
egorized into primary and secondary metabolites, where 
the former are involved in housekeeping functions and 
the latter are used by plants in interactions with their 
environment [1]. The most dominant of the secondary 
metabolites are phenylpropanoids, a class of compounds 

that bear a 3-carbon (C-3) chain linked to 6-carbon (C-6) 
aromatic ring [2–5]. The diversification of phenylpro-
panoids in different plant species has previously been 
attributed to the presence or absence of active enzymes 
involved in their biosynthetic pathway [2, 6]. Some of 
the known phenylpropanoids include flavonoids, isofla-
vonoids, coumarins, anthocyanins, stilbenes, benzoic 
acids, benzaldehyde derivatives, phenylpropenes and 
hydroxyl-cinnamic acid (HCA) derivatives, among others 
[2, 7, 8]. HCA derivatives form one of the largest classes 
of phenylpropanoid-derived plant compounds [9, 10], 
and include caffeic-, ferulic- and p-coumaric acids. These 
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metabolites contribute to the abundance of plant natu-
ral products as they form conjugates with different mol-
ecules such as sugars, polyamines and organic acids [9, 
11–15]. The most common example of HCAs conjugated 
to organic acids are chlorogenic acids (CGAs), which 
are formed from an esterification reaction between the 
organic acid, quinic acid (QA) and one to four (identical 
or different) residues of HCA derivatives [12].

In nature, mono-acyl CGAs commonly occur as three 
regio-isomers where C3, C4 and C5 hydroxides on the 
QA are esterified giving rise to three positional isomers 
[16–18]. However, 1-acyl CGA has occasionally been 
noted in some plant species [19, 20]. Lastly, geometrical 
isomerization (trans and cis) of the different HCA deriva-
tives seals the final diversification of these molecules 
[14–17, 21–24]. Another example of HCA derivatives 
forming conjugates with organic acids includes the ester-
ification between isocitric acid (IA) and one of the HCA 
derivatives to form hydroxycinnamoyl-isocitric acid [25] 
as shown in Scheme  1. Unlike QA with four possible 
esterification positions, this esterification of IA moiety 
can occur at position 2 (C2). In addition, the diversifica-
tion of hydroxycinnamoyl-isocitric acid only includes the 
conjugation of different HCA derivatives to the organic 
acid and the geometrical isomerization thereof. The 
botanical distribution of hydroxycinnamoyl-isocitric acid 
derivatives is not well documented. This is possibly due 
to the misidentification as mono-acyl CGAs since both 
respective group of compounds have a molecular mass of 
354 Da for caffeoyl-, 338 Da for p-coumaroyl- and 368 Da 
for feruloyl conjugates [16, 25].

In recent years, liquid chromatography (LC)–MS 
has become one of the most common techniques for 
annotation of plant metabolites as well as discerning 
between different positional isomers of mono-, di- and 
tri-acyl CGAs [14–16, 22, 23, 26, 27]. However, very lit-
tle has been done for geometrical isomers of CGAs [28, 
29]. Despite the remarkable analytical developments 
and methodologies, there are still some common mis-
representation in annotation of these two classes of 
compounds. This could be due to their similar MS frag-
mentation patterns leading to poor resolution and un-
differentiation of these molecules thereafter. Herein we, 
demonstrate the unique and similar chromatographic 
and mass spectrometric characteristics of hydroxycin-
namoyl-quinic- and hydroxycinnamoyl-isocitric acids 
using LC–MS experiments. Authentic standards and 
plant extracts of Moringa oleifera and Amaranthus vir-
idis, were employed to demonstrate the common ele-
ments that bring confusion. These two plant species are 
reported to respectively accumulate/produce these com-
pounds in abundance [24, 30].

Methods
Chemical and reagents
Authentic standards of caffeic acid-derived chlorogenic 
acids (3-, 4- and 5-caffeoylquinic acid) were purchased 
from Phytolab (Vestenbergsgreuth, Germany). Analyt-
ical-grade methanol and acetonitrile were purchased 
from Romil Pure Chemistry (Cambridge, UK). Formic 
acid was obtained from Sigma-Aldrich (St. Louis, MO, 
USA).

Scheme 1  Structures of mono-acylated HCA conjugates of quinic and isocitric acid
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Metabolite extraction
The dried leaves of M. oleifera and A. viridis were pul-
verized using a clean and dry quartz mortar and pestle. 
For extraction, the respective amounts of powdered leaf 
material (0.2  g) were mixed with 2  mL of 50% aqueous 
methanol and these extracts were placed (with the lids of 
the tubes closed to avoid evaporation) in a heating block 
at 60 °C for 2 h. The samples were sonicated for 30 min 
using an ultrasonic bath and then centrifuged at 9740×g 
for 10  min at 4  °C. The resulting supernatants for both 
plant samples were then subjected to UV-irradiation for 
induction of geometrical isomerization [21]. Coffee bean- 
and pineapple extracts to be used as surrogate standards 
were prepared by extracting 0.2  g of these materials in 
1 mL of 50% methanol.

Ultra‑high performance liquid chromatography mass 
spectrometry (UHPLC–MS/MS) analysis
A Shimadzu Nexera 30 UHPLC (Kyoto Japan) fitted with 
a Viva C18 analytical column (3.0  µm, 2.1  ×  100  mm; 
Restek, USA) was used with the following settings: an 
injection volume of 2  µL, column oven temperature of 
40 °C, a binary solvent mixture consisting of MilliQ water 
containing 0.1% formic acid (eluent A) and methanol 
containing 0.1% formic acid (eluent B) with a constant 
flow rate of 0.4  mL/min. The gradient elution was used 
with the following conditions: 5% eluent B maintained 
for 3 min, followed by a linear increase to 45% of eluent 
B at 25  min, then a further increase to 90% at 30  min, 
conditions were held constant for 2  min before being 
decreased to the initial conditions at 34 min followed by 
a 6 min isocratic wash at 5% to re-equilibrate the column. 
The total chromatographic run time was 40 min. The data 
were acquired using a UV detector set at 325 nm.

The chromatographic effluent was further introduced 
to an MS detector and ionized by electrospray (ESI). The 
ionized ions were further analyzed by a triple quadru-
pole (QqQ) mass spectrometer operating under the fol-
lowing settings: the interface voltage was set at 3.5 kV (in 
negative ESI mode), the source temperature was 300 °C, 
nitrogen was used as the drying gas at the flow rate of 
15.00 L/min and argon used as a nebulizing gas at a flow 
rate of 3.00 L/min, argon was also used as a collision gas 
with a pressure of approximately 230  kPa in the colli-
sion cell. For each run, the MS spectra at the mass range 
100–1000  Da was collected continuously with a scan 
time of 1 s. For targeted analyses, the product scan MS 
mode was used to monitor the fragmentation patterns 
of the following ions: m/z 353 for caffeoyl-quinic acid 
and caffeoyl-isocitric acid, m/z 337 for coumaroyl-quinic 
acid and coumaroyl-isocitric acid and finally m/z 367 for 
feruloyl-quinic acid and feruloyl-isocitric acid. Exhaus-
tive MS fragmentation was achieved by collecting data 

at various collision energies (5–35  eV) to mimic MSE 
experiments.

Results and discussion
Compound annotation
As one of the main aspects of the present study, we 
compare hydroxycinnamoyl-quinic- and hydroxycin-
namoyl-isocitric acid derivatives and show how both 
chromatography and mass spectrometry can be used to 
distinguish these isobaric compounds. Single ion moni-
toring (SIM) chromatograms of hydroxycinnamoyl-
quinic- and hydroxycinnamoyl-isocitric acid from M. 
oleifera and A. viridis leaf extracts are shown respec-
tively in Fig. 1. The mass spectra and retention times of 
the compounds under study were compared with those 
of available standards (i.e. 3-CQA, 4-CQA and 5-CQA). 
Coffee bean extracts have been previously reported to be 
remarkably rich in a variety of CGAs, including feruloyl 
and ρ-coumaroyl derivatives [9, 13, 27]. Furthermore, 
a study by Steingass et  al. [31] revealed the presence of 
hydroxycinnamoyl isocitric acids in pineapple extracts. 
Hence in this study, coffee bean- and pineapple extracts 
were analyzed using the same optimized method and the 
results obtained therefore served as surrogate standards 
for feruloyl and ρ-coumaroyl- and IA derivatives, respec-
tively (Additional file 1: Figure S1).

In addition, the annotation of hydroxycinnamoyl-
quinic- and hydroxycinnamoyl-isocitric- acids was also 
achieved by comparing MS fragmentation patterns with 
those of commercially available standards (Fig. 2). HCA 
conjugates of both QA (Fig. 2a–c) and IA (Fig. 2d–f) are 
isobaric and produce precursor ion peaks at m/z 337, 353 
and 367 for p-coumaroyl-, caffeoyl- and feruloyl conju-
gates, respectively in negative ionization. According to 
the hierarchical fragmentation scheme proposed by Clif-
ford et al. [16] the annotation of 4-acyl CGA derivatives is 
indicated by the presence of an intense product ion peak 
at m/z 173 [16]. However, MS fragmentation patterns of 
all hydroxylcinnamoyl isocitric acids also produce a peak 
at m/z 173 (Fig.  2) and, as such, these compounds are 
often wrongly annotated.

Previous studies have pointed out several MS diagnos-
tic peaks have been noted for HCA derivatives, where 
p-coumaric acid produces ions at m/z 163 [p-coumaric 
acid–H]− and m/z 119 [p-coumaric acid–H–CO2]− 
(observed also in our study in Fig. 2b), caffeic acid pro-
duces ions at m/z 179 [caffeic acid–H]− and m/z 135 
[caffeic acid–H–CO2]− (observed also in our study in 
Fig. 2a) and ferulic acid produces ions at m/z 193 [feru-
lic acid–H]− and m/z 134 [ferulic acid–H–CO2–CH3]− 
(observed also in our study in Fig.  2c) [16, 23, 24]. 
However, one important observation/evidence emerg-
ing from this study is that these diagnostic patterns were 
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only observed when HCA derivatives were attached to 
quinic acid (Fig. 2). This evidenced that the presence of 
HCA daughter peaks is a distinguishing character for 
quinic acid conjugates. Furthermore, in the current study, 
tandem MS (MS/MS) approach was used to distinguish 
between QA and IA derivatives. Given that both QA 

and IA have shown to produce similar MS spectra com-
prising of ions at m/z 191 and 173 in ESI negative mode 
(Scheme  2; Fig.  2a–f); this has subsequently led to the 
incorrect annotation of these molecules in some reported 
literature [28, 30]. Thus, to distinguish IA from the QA 
derivatives, the results obtained in this study revealed 

Fig. 1  UHPLC–SIM-MS chromatograms of selected HCA conjugates from M. oleifera (a–c) and A. viridis extracts (d–f). HCAs conjugated to quinic 
acid: a caffeoyl-quinic acids, b p-coumaroyl-quinic acid and c feruloyl-quinic acid. HCAs conjugated to isocitric acid: d caffeoyl-isocitric acid, e 
p-coumaroyl-isocitric acid and f feruloyl-isocitric acid

Fig. 2  Typical MS fragmentation patterns of HCAs conjugated to quinic acid (a–c) extacted from M. oleifera or isocitric acid (d–f) extracted from M. 
viridis: a 4-caffeoyl-quinic acid, b 4-p-coumaroyl-quinic acid, c 4-feruloyl-quinic acid, d 2-caffeoyl-isocitric acid, e 2-p-coumaroyl-isocitric acid and f 
2-feruloyl-isocitric acid
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other diagnostic ion peaks at m/z 155 and 111 which 
were only observed for IA conjugates (Scheme 2; Fig. 2d–
f), and these results are also consisted with published 
data shown elsewhere [25]. Hydroxycinnamoyl-quinic 
acid and hydroxycinnamoyl-isocitric acid structures are 
shown in Scheme  1 and the MS fragmentation patterns 
are summarized in Table 1.

Furthermore, in a chromatographic space, it was inter-
estingly observed that IA derivatives elute later than the 
QA counterparts (Fig.  1 and Table  1). For example, all 
three CQA regio-isomers eluted at retention times (Rt) 
4.7 min for 3-CQA, 8.3 min for 5-CQA and 9.3 min for 
4-CQA (Fig. 1a) compared to caffeoyl-isocitric acid (CIA) 

which eluted at Rt 9.6 min (Fig. 1d). Similarly, the same 
elution order was also consistent for p-coumaroyl-quinic 
acid (Fig.  1b) and feruloyl-quinic acid (Fig.  1c) with 
respect to their isocitric acid counterparts (Fig.  1e, f ). 
Our results are consistent with the reported elution order 
observed elsewhere [25], where caffeoyl-quinic acids are 
seen to elute earlier than caffeoyl-isocitric acids on a 
C18 column. This suggests that in a reverse phase chro-
matographic space, the elution of IA conjugates is more 
retarded than the respective QA conjugates, an indica-
tion that IA derivatives are less polar than QA deriva-
tives. This postulation can be explained by structural 
differences and stereochemistry of these compounds, 

Scheme 2  Main fragmentation mechanism and structural re-arrangement for the [M–H]− ion of quinic acid (a) and isocitric acid (b) in negative 
ionization

Table 1  Characterization of hydroxyl-cinnamic acid conjugates from M. oleifera and A. viridus

No. Rt (min) Compound name M. oleifera A. viridus [M–H]− (m/z) Fragmentations (m/z)

1 4.7 3-Caffeoyl-quinic acid √ 353 191, 179, 161, 135

2 6.3 3-p-Coumaroyl-quinic acid √ 337 191, 173, 163, 119

3 8.3 5-Caffeoyl-quinic acid √ 353 191, 135

4 8.5 3-Feruloyl-quinic acid √ 367 193, 191, 173, 149, 134

5 9.3 4-Caffeoyl-quinic acid √ 353 191, 179, 173, 135

6 9.6 Caffeoyl-isocitric acid √ 353 191, 173, 155, 111

7 11.1 5-p-Coumaroyl-quinic acid √ 337 191, 119

8 11.6 4-p-Coumaroyl-quinic acid √ 337 173, 163, 137, 119

9 12.2 p-Coumaroyl-isocitric acid √ 367 173, 155, 111

10 13.1 5-Feruloyl-quinic acid √ 337 191, 135

11 13.7 4-Feruloyl-quinic acid √ 367 193, 173, 134

12 13.9 p-Feruloyl-isocitric acid √ 367 173, 155, 111
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resulting in differences in polarities. For instance, the QA 
possess more hydroxyl (–OH) groups (four in total), thus 
rendering it more polar relative to IA with only a single 
–OH group. Moreover, the IA has more C=O groups in 
close proximity which may led to the formation of intra-
molecular hydrogen bonds resulting in higher hydro-
phobicity. According to the experimentally determined 
LogPo/w values shown elsewhere (http://www.chemspi-
der.com), quinic acid is evidently more polar as it has a 
value of −2.01 whereas isocitric acid has a value of −1.47.

Proposed fragmentation/structural re‑arrangements 
of quinic‑ and isocitric acid
The results from MS analyses of hydroxycinnamoyl-
quinic and hydroxycinnamoyl-isocitric acid show both 
QA and IA to be readily lost as product ions at m/z 191. 
However, the downstream MS fragmentation of these 
organic acids are different (Scheme 2). For instance, QA 
produces intense ions at m/z 191 [QA–H]− and m/z 173, 
the latter resulting from the subsequent loss of water 
(−18  Da) [QA–H–H2O]− (Scheme  2). Similarly, IA at 
m/z 191 also undergoes dehydration to give an ion at 
m/z 173 [IA–H–H2O]−. Consequently, the IA moiety 
undergoes further structural rearrangement when the 
ion at m/z 173 sequentially loses water (−18 Da) to give 
a unique ion at m/z 155 [IA–H–2H2O]−. The resulting 
product ion is further decarboxylated (−44  Da) to give 
another unique product ion at m/z 111 [IA–H–2H2O–
CO2]− (Scheme  2b). From the above it can be noted 
that the ions at m/z 155 and 111 characteristic for IA 
conjugates, which allows reliable distinction from QA 
derivatives.

Conclusion
In conclusion, this work confirms the presence of 
hydroxycinnamoyl-isocitrates in A. viridis and hydroxy-
cinnamoyl-quinates in M. oleifera, respectively. Although 
these compounds share similar MS molecular finger-
prints, this work highlights the mass spectrometric frag-
mentation differences between the two related groups 
of compounds. Herein, the minor variations/differences 
with regard to the respective diagnostic peaks allow 
for the unambiguous annotation. As such, these find-
ings illustrate the combinatorial and efficient ability of 
LC–MS to unequivocally distinguish between hydroxy-
cinnamoyl-isocitrates and hydroxycinnamoyl-quinates. 
Furthermore, these findings are expected to provide a 
template reference for annotation of these compounds in 
other plants.
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