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The structural and optical constants of Ag2S
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Abstract

Background: In this paper a template-free precipitation method was used as an easy and low cost way to
synthesize Ag2S semiconductor nanoparticles. The Kramers–Kronig method (K–K) and classical dispersion theory
was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and
dielectric constant ε(ω) in Far-infrared regime.

Results: Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method. Ag2S nanoparticle was
characterized by X-ray diffraction, Scanning Electron Microscopy, UV-visible, and FT-IR spectrometry. The refinement
of the monoclinic β-Ag2S phase yielded a structure solution similar to the structure reported by Sadanaga and
Sueno. The band gap of Ag2S nanoparticles is around 0.96 eV, which is in good agreement with previous reports
for the band gap energy of Ag2S nanoparticles (0.9–1.1 eV).

Conclusion: The crystallite size of the synthesized particles was obtained by Hall-Williamson plot for the synthesized
Ag2S nanoparticles and it was found to be 217 nm. The Far-infrared optical constants of the prepared Ag2S
semiconductor nanoparticles were evaluated by means of FTIR transmittance spectra data and K–K method.

Keywords: Nanostructures, Semiconductors, Raman spectroscopy, Infrared spectroscopy, Crystal structure,
Optical properties
Background
In recent years, nanometer-sized chalcogenide semicon-
ductors have drawn attention as a component of nano-
technology, mainly due to their physical and chemical
properties, heavily dependent on their shape and size. The
Ag2S is found amongst the most important chalcogenides
and because of its unique optoelectronic properties. It
have been extensively studied due to its many potential
applications in optical and electronic devices such as
infrared detectors, photoconductive cells, magnetic field
sensors and photoconductors, amongst others [1–5]. Ag2S
is an effective semiconductor material due to a large
absorption coefficient and a direct band gap of 0.9 to
1.05 eV. It is a coinage mineral undergoes a structural
phase transition. Above 183 °C, Ag2S appear with a cubic
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structure known as argentite (α-Ag2S). At room
temperature, Ag2S have a monoclinic structure named
acanthite, space group P21/c and Z = 4 (β-Ag2S) [6, 7].
The α-Ag2S behaves like a metal (dσ/dT < 0) while β-Ag2S
behaves like a semiconductor (dσ/dT > 0, with activation
energy of 1.3 eV) [8–10]. Several methods have been
developed for the synthesis of Ag2S nanoparticles such as
solvothermal method, hydrothermal route, and single-
source precursor routes [11]. Yu et al. synthesized sub-
micrometer Ag2S particles thru a simple hydrothermal
method but it is difficult to control the size and shape of
the nanoparticles for the large-scale synthesis of high-
quality nanoparticles [12]. Qin et al. successfully synthe-
sized Ag2S nanorods by a biomimetic route in the
lysozyme solution at physiological temperature and
atmospheric pressure [4]. In another work, Wang et al.
synthesized spherical silver sulphide nanoparticles (Ag2S)
at 205 °C under N2 atmosphere by a direct reacting silver
acetate with n-dodecanethiol [13]. Therefore, there is a
considerable challenge for the synthesis of Ag2S
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nanoparticles on a large scale through a simple and low-
cost approach.
In this paper, a template-free precipitation method was

used to prepare nanometric powders of Ag2S. The
structural and optical constants of the prepared Ag2S
nanometric powders in Far infrared were calculated and
are presented for the first time.
Fig. 2 X-Ray Diffraction patterns and Rietveld refinement plot for
Ag2S nanoparticles powder
Experimental section
Synthesis and characterization of Ag2S nanoparticles
Nanocrystalline Ag2S was synthesized by a wet chemical
precipitation method. Initially 0.1 mmol of AgNO3

(Aldrich, Germany) was dissolved in 50 ml of distilled
water. The obtained solution was added drop wise into
50 mL 0.1 M Na2S solution. Finally, the as prepared
precipitated nanocrystalline powder was collected and
dried after centrifugation at 80 °C during a 3 h period.
The schematic diagram for the experimental set up and
chemical reaction is shown in Fig. 1. The structure and
morphology of the sample was studied by X-ray diffraction
(Shimadzu XRD-6000, Tokyo, Japan) and Scanning Elec-
tron Microscopy (SEM, SU-70, Hitachi). The study of the
optical properties of the samples was carried out by UV–
visible (Perkin-Elmer, Lambda 35) and FT-IR spectrometry.
Table 1 Structural details and refined parameters obtained by
Rietveld refinement

Basic structural details

Structure Space group

Monoclinic P 21/c

Lattice parameters (in Å) and angle (in °)

a b c α β γ Vol. (Å3)

4.2278 6.9289 9.5323 90 125.58 90 227.11

Atomic coordinates parameters

Atom x/a y/b z/c SOF
Results and discussion
Phase and compositional study (XRD)
Figure 2 shows the X-ray diffraction pattern for synthe-
sised Ag2S particles. A Rietveld refinement analysis was
performed after x-ray diffraction pattern acquisition.
The refinement of the monoclinic β-Ag2S phase yielded a
structure solution similar to the structure reported by
Sadanaga and Sueno [8]. No impurity phase was observed
in the X-ray diffraction pattern. However, the refined struc-
ture from this study showed a slight deviation in the xyz
coordinates for Ag and S atom. The refined parameters are
Fig. 1 Schematic diagram of experimental set up
listed in Table 1, and the Rietveld refinement diffraction
pattern of β-Ag2S structure is shown in Fig. 2.
To determine the strain and size effect associated to the

synthesized Ag2S particles, Hall-Williamson method was
used as the estimation of the particle size. This is explained
by the Scherrer equation not taking in consideration for
Ag1 0.07245 0.01478 0.30895 1

Ag2 0.72498 0.32529 0.43819 1

S1 0.49293 0.23577 0.13261 1

Anisotropic displacement parameters, in Å2

Atom U11 U22 U33 U12 U13 U23

Ag1 0.03732 0.04222 0.05706 0.01489 0.03081 0.01655

Ag2 0.05167 0.05616 0.03745 -0.01454 0.04492 -0.00585

S1 0.01985 0.01236 0.00734 0.01186 0.02756 -0.00555

Other parameters

Rp Rwp Rexp Rb Rf χ2 c/a

18.8 22.7 20.14 7.94 6.72 1.27 2.2547

Goodness of fit

D-W statistics (d)
QD =
expected (d)

S (goodness of fit) =
Rwp/Rexp

1.6094 1.8251 1.13
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the broadening due to lattice strain presence. Generally,
the observed peak broadening Bo can be attributed to

Br ¼ Bo− Bi ð1Þ
where Bo is the observed peak broadening in radians, Bi

is the instrumental broadening in radians, and Br is the
broadening due to the small particle size and lattice
strain. Using the Scherrer equation, the broadening
caused by small crystallite size may be expressed as:

BC ¼ kλ
d cosθ

ð2Þ

where: B is the broadening solely caused by small crystallite
size, k is a constant whose value depends on particle shape
and is usually taken as unity, d is the crystallite size, θ is
the Bragg angle and λ is the wavelength of the incident
X-ray beam (1.5418° A). Similarly, according to Wilson, the
broadening caused by lattice strain is expressed as:

Bs ¼ 4ε tanθ ð3Þ
where: B is the peak broadening caused by the lattice
strain, ε the strain distribution within the material and θ
is the Bragg angle [14]. The instrumental broadening
was estimated performing a XRD to a pure strain-free
silicon standard under identical conditions. The total
broadening excluding the instrumental broadening of
the peak is expressed as the sum of eqn (2) and (3) [15]:

Br ¼ kλ
t Cosθ

þ 4 ε tanθ ð4Þ

Br Cosθ
λ

¼ k
t

þ ε
4Sinθ
λ

ð5Þ

The plot of Br cos(θ)/λ versus 4sin(θ)/λ is a straight line
with slope equal to ε and hence the particle size can be es-
timated from the intercept. A typical Hall-Williamson plot
for the synthesized Ag2S nanoparticles is shown in Fig. 3.
Fig. 3 W-H analysis of Ag2S particles
The crystallite size of the synthesized particle was
found to be 217 nm. A small non uniform lattice strain
(0.039 %) was observed in the sample. The non-uniform
strain and the crystallite size was calculated from the
slope and the y-intercept of the fit, respectively.

Morphology study (SEM)
Figure 4 (left) depicts the SEM image of Ag2S nanoparti-
cles. Formation of agglomerated spherical Ag2S nanoparti-
cles can be seen from this Figure. Therefore it is difficult to
estimate the real particles size. Energy dispersive X-ray
spectroscopy (EDS) was also performed to determine the
chemical composition of the prepared Ag2S nanoparticles
(shown in Fig. 4 (right)). The obtained EDS results con-
firmed the presence of Ag and S in the final products.
The absence of extra peaks, besides the expected ones

for nanocrystals, suggests that the obtained powders are
very pure.

UV–VIS reflectance
The UV–VIS reflectance spectrum of the sample is pre-
sented in Fig. 5a. The Kubelka–Munk function was used
to convert the diffuse reflectance into the absorption
coefficient and spectrum is presented in Fig. 5b.

α ¼ k
s
¼ 1−R∞ð Þ2

2R∞
≡F R∞ð Þ ð6Þ

where S and K are the scattering and absorption coeffi-

cients; the reflectance R∞ is equal to: Rsample

RS tandard
[16].

Bulk Ag2S is a semiconductor with a direct band gap
of 0.9 to 1.05 eV [17]. The following equation was used
to determine the band gap of Ag2S nanoparticles [18]:

α ¼ A hν−Eg
� �n

=hυ ð7Þ

where A is constant, Eg is the absorption band gap, α is
the absorption coefficient, and n depends on the type of
transition, n may assume the values 1/2, 2, 3/2 and 3
respectively corresponding to allowed direct, allowed
indirect, forbidden direct and forbidden in direct transi-
tions [19].
Since Ag2S nanoparticles have direct allowed transitions

so we choose n = 1/2. The band gap of Ag2S nanoparticles
was determined by extrapolating the function of (αhυ)2 in
term of hυ as shown in the Fig. 6 and it was found that the
band gap of Ag2S nanoparticles is around 0.96 eV, which is
in good agreement with previous reports for the band gap
energy of Ag2S nanoparticles (0.9–1.1 eV) [19–21].

FT-IR analysis
Figure 7 shows FT-IR spectrum of Ag2S nanometric pow-
ders. The characteristic vibration of Ag–S appears located
at 500–600 cm−1 while the broad and small peaks located



Fig. 4 SEM image (left side) of and EDS analysis of the Ag2S nanoparticle (right side)
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at 3400 and 1600 cm−1 can be attributed to the stretching
and bending vibrations of the O–H bond of the adsorbed
H2O molecules on the surface of Ag2S [22, 23].

Optical constants of Ag2S nanoparticles
The K–K method was used to determine the Far-infrared
optical constants of the prepared Ag2S semiconductor
nanometric powders by using FT-IR transmittance spectral
Fig. 5 UV–VIS reflectance spectrum of Ag2S nanoparticles a reflectance
and b absorption coefficient
data. The absorption (A) can be obtained from transmit-
tance according to Lambert’s law [24]:

A ωð Þ ¼ log
I0
I
¼ log10

1
T ωð Þ ¼ 2−log10 T ωð Þ%ð Þ ð8Þ

R ωð Þ ¼ 100− T ωð Þ þ A ωð Þ½ � ð9Þ

where R(ω) is the reflectance in the particular wave num-
ber. The reflective index n is an important physical quantity
in optical design and generally is a complex quantity:

~n ωð Þ ¼ n ωð Þ þ ik ωð Þ ð10Þ

where n(ω) and k(ω) are the real and the imaginary parts
of complex refractive index respectively, and can be
obtained by the following equations:

n ωð Þ ¼ 1−R ωð Þ
1þ R ωð Þ−2 ffiffiffiffiffiffiffiffiffiffi

R ωð Þp
cosφ ωð Þ ð11Þ
Fig. 6 (αhν)2 versus hν for Ag2S nanoparticles



Fig. 7 FT-IR spectrum of the Ag2S nanoparticles

Fig. 8 The Far-infrared optical constants of Ag2S semiconductor
nanoparticles a refractive index and extinction coefficient, b real and
imaginary parts of dielectric functions
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k ωð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
R ωð Þp

cos φð Þ
1þ R ωð Þ−2 ffiffiffiffiffiffiffiffiffiffi

R ωð Þp
cosb φ ωð Þ ð12Þ

Here, φ(ω) is the phase change between the incident
and the reflected signal at a particular wavenumber ω.
This phase change can be calculated from the K–K
dispersion relation [25]:

φ ωð Þ ¼ −ω
π

Z∞

0

LnR ω
0� �
−LnR ωð Þ

ω02−ω2
dω′ ð13Þ

This integral can be precisely evaluated by Maclaurin’s
method [26]:

φ ωj
� � ¼ 4ωj

π
� Δω�

X
i

ln
ffiffiffiffiffiffiffiffiffiffi
R ωð Þp� �

ω2
i −ω

2
j

ð14Þ

here Δω = ωj + 1 − ωj and if j is an even number then
i=1, 3, 5, 6,,…j − 1, j + 1, ….. while if jis an odd number
then i =2, 4, 6,…j − 1, j + 1, …..
In addition, the dielectric function can be obtained by

the square of the refractive index. Therefore, the real and
imaginary parts of the complex dielectric function are:

�ε ¼ ~n ωð Þ½ �2 ¼ n ωð Þ þ ik ωð Þ½ �2 ð15Þ
⇒ ε′ þ iε″ ¼ n2 ωð Þ−k2 ωð Þ þ 2in ωð Þk ωð Þ ð16Þ

⇒
ε′ ωð Þ ¼ n2 ωð Þ−k2 ωð Þ
ε″ ωð Þ ¼ 2n ωð Þk ωð Þ

�
ð17Þ

The Far-infrared optical constants of Ag2S semicon-
ductor nanoparticles was calculated by the above equations
and the spectrums are presented in Fig. 8a and 8b.

Conclusion
We have successfully prepared Ag2S semiconductor
nanometric powders by using a simple and low cost wet
chemical precipitation technique. The micro-structural
analysis of the sample was done through XRD pattern
analysis and Rietveld refinement analysis. No impurity
phase was observed in the X-ray diffraction pattern. The
crystallite size of the synthesized particles was obtained by
Hall-Williamson plot for the synthesized Ag2S nanoparti-
cles and it was found to be 217 nm. The Far-infrared
optical constants of the prepared Ag2S semiconductor
nanoparticles were evaluated by means of FTIR transmit-
tance spectra data and K–K method.
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