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Abstract

Background: Phenolic compounds are widely distributed in plant kingdom and constitute one of the most
important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic
structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers
against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes
monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups,
besides many other electron donating and withdrawing groups, in addition to polyphenols with 1–3 hydroxyl
groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were
incorporated in ortho, meta and para positions.

Results: SAR study indicates that the most important structural feature of phenolic compounds required to possess
good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position
because of their strong electron donating effect in these positions and the formation of a stable quinone-like products
upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or
alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity.
Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines
which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process.
Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained
between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained
between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems.

Conclusions: In conclusion, the structures of good anti radical and antioxidant phenols and anilines are defined. The
obtained good correlations imply that measuring anti DPPH activity can be used as a simple predictive test for the anti
hydroxyl and peroxyl radical, and antioxidant activities. Kinetic measurements showed that strong antioxidants with
high activity have also high reaction rates indicating that factors stabilizing the phenoxyl radicals lower also the
activation energy of the hydrogen transfer process.
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Background
Phenolic compounds are widely distributed in plant king-
dom and constitute one of the most important classes of
natural (e.g. α-tocopherol, gallic acid and syringic acid)
and synthetic (e.g. BHT, BHA and TBHQ) antioxidants
[1-4]. Even simple phenolsshow wide variations in their
chemical structures that include monophenols (e.g. cresols
and eugenol), polyphenols (e.g. catechols and hydroqui-
nones), substituted benzoic acid (e.g. salicylic and vanillic
acids) and cinnamic acid (e.g. caffeic acid), and terpenoids
(e.g. thymol and carvacrol). A few reports indicated that
anilines also express radical scavenging and antioxidant
activities [5-8]; where some of them present naturally in
living cells (e.g. o- and p-aminobenzoic acids). Phenolic
antioxidants are generally believed to form phenoxyl
radical upon donating a hydrogen atom that could
quench active free radicals and stop the propagation of
lipid peroxidation [9,10]. The number and position of
aromatic hydroxyl groups were found to have strong
impact on the activity of phenolic antioxidants [11-13].
The presence of o-hydroxyl group was reported to lower
the O-H bond dissociation energy and hence increase
the hydrogen atom donation ability [13-16] and consid-
ered the most important structural feature of the high
activity [11,17]. Electron donating groups, especially
alkyl and methoxy groups were reported to increase the
electron density of the phenoxyl radicals leading to
enhancement of the radical scavenging and antioxidant
activity [18]. The high activity of α-tocopherol was
attributed to the p-alkoxy group and the methyl groups
on the aromatic ring [19].
Fifty one structurally variant phenolic and anilinic

compounds were examined as radical scavengers against
DPPH, hydroxyl and peroxyl radicals, and as antioxi-
dants in sunflower oil and liver homogenate systems.
Kinetics vs thermodynamics of scavenging hydroxyl
radical was examined.

Experimental
Chemicals
All chemicals were obtained as reagent grade from
Aldrich, Sigma or Fluka chemical companies and used
without further purification.

DPPH radical scavenging activity
The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scaven-
ging ability of the examined compounds was measured
according to Brand-Williams, Cuvelier, & Berset [20]. The
examined compound (25 μL, 5 mM) or 25 μL methanol
(as a control) with 2.5 ml 0.004% DPPH in methanol
(0.1 mM), were mixed. The solution was incubated for 20
min at room temperature before reading the absorbance
(A) at 517 nm against methanol as blank. The inhibitory
percentage of DPPH was calculated according to the
following equation:

% DPPH radical ascavinging activity

¼ 100� A517 Expð Þ
A517 controlð Þ� 100

� �

% Hydroxyl radical scavenging activity
Hydroxyl radical scavenging activity of the examined
compounds was measured based on the method of
Halliwell, Gutteridge, & Arouma [21], with a slight
modification according to Jiang, Bank, & Scholes [22].
Briefly, 200 μL deoxyribose solution (2.8 mM), 200 μL
H2O2 (1.4 mM) and 200 μL of the examined compound
(5 mM) or oxygen free water (control), were placed in a
test tube. Fenton reaction was initiated by the addition
of 200 μL EDTA (100 μM), 200 μL FeCl2 solution (20 μM
in 1 mM HCl); all used solutions were oxygen free. The
total volume of the reaction mixture (1 ml) was mixed
and incubated for 10 second at room temperature. The
reaction was stopped by the addition of 1 ml 10%
trichloroacetic acid (TCA), then 1 ml 1% thiobarbituric
acid (TBA) solution in 50 mMNaOH containing 0.02%
butylatedhydroxyanisole (BHA) was added. The mixture
was heated at 80°C for 15 minutes then cooled and the
absorbance (A) was measured at 532 nm. The hydroxyl
radical scavenging activity was calculated according to
the following equation:

% OH radical scavinging activity

¼ 100� A532 Expð Þ
A532 controlð Þ� 100

� �

Rate constant of scavenging hydroxyl radical
The rate constant (ks) of hydroxyl radical scavenging
reaction was measured by using the previous method of
the deoxyribose model [21]. The same procedure was
adopted by using various concentrations of the exam-
ined compounds (0–1 mM final concentration), and
then the following equation was applied using a linear
regression analysis by plotting 1/A vs [S].
Where: A is the absorbance in the presence of the ex-

amined compound, Aoisthe absorbance in the absence
of the examined compound, kDRis the second order rate
constant of the reaction of deoxyribose with hydroxyl
radical (3.1 × 106M-1Sec-1), [S] is the molar concentra-
tion of the scavenger, [DR] is the molar concentration of
deoxyribose (0.56 mM), and ks is the second order rate
constant (mM-1Sec-1) of the reaction of a compound
with the hydroxyl radical.

Peroxyl radical scavenging activity
Scavenge peroxyl free radicals was estimated by ORAC
method described by Cao & Prior [23] and modified by
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Gerhäuser et al [24]. AAPH, 2,2-azobis (2-amidinopropane)
dihydrochloride, was used as peroxyl radical generator
while β-phycoerythrin (β-PE) was used as a redox-sensitive
fluorescent indicator protein. Fluorescence was measured
at 37°C for 100 min until completion using Microplate
reader FluoStarOptimum with excitation at 540 nm and
emission at 565 nm. Trolox was used as standard where
one ORAC unit is equal to the net protection of β-PE
produced by 1 μM trolox.

Antioxidant activity in sunflower oil
An antioxidant activity assay was carried out in sunflower
oil as described by Osawa & Namiki [25], with slight
modification. The examined compound (0.2 ml, 5 mM in
Methanol) or 0.2 ml methanol (control) was added to a
solution of sunflower oil (0.2 ml oil, 10 ml 99.8% ethanol
and 10 ml 0.2 M phosphate buffer pH 7.0). The total
volume was adjusted to 25 ml with distilled water. The
reaction mixture was incubated at 30°C for 24 hrs, then
the degree of oxidation was measured according to the
thiocyanate method by sequentially adding ethanol (10 ml,
75%), ammonium thiocyanate (0.2 ml, 30%), sample so-
lution (0.2 ml), and ferrous chloride (0.2 ml, 20 mM in
3.5% HCl). After the mixture was stirred for 3 minutes,
the peroxide value was determined by reading the
absorbance (A) at 500 nm. The percentage inhibition of
oil acid peroxidation was calculated according to the
following formula:

% Antioxidant activity ¼ 100� A500 Expð Þ
A500 controlð Þ� 100

� �

Antioxidant activity in rat liver
Albino rabbit liver was used. Liver tissue (4 g) was sliced
and homogenized in 22.5 ml KCl-Tris HCL buffer (150
mM, pH 7.2) and centrifuged at 5000 × g for 10 minutes
to give supernatant of liver homogenate. The effect of
anti-FeCl2-ascorbic acid stimulated lipid peroxidation
was determined by the method of Yoden, Lio, & Tabata
[26]. The liver homogenate (0.4 ml), 0.1 ml Tris–HCl
buffer (pH 7.2) and 0.2 ml tested compound (5 mM in
methanol) or 0.2 ml methanol (control) were mixed and
incubated for 1 h at 37°C. After incubation, 0.5 ml 0.1 N
HCl, 0.5 ml 0.9% sodium dodecyl sulfate (SDS), and 0.5 ml
H2O were added and shaken with the incubation solution.
TBA (2 ml, 0.5%) was added then the mixture was heated
for 30 minutes in a boiling water bath. After cooling, 5 ml
n-butanol was added; the mixture was then shaken vigor-
ously. The n-butanol layer was separated by centrifugation
at 1000 × g. The absorbance (A) of the sample was read at
532 nm against a blank, which contained all reagents
except antioxidant.
Theoretical calculations and statistical analysis
Heat of formation was calculated by MOPAC calculations
using PM3 method in CambridgeSoft package (2000) after
energy minimization. The electrophilic Brown parameter
(σ+p) of para substituents and Hammett parameter (σm) of
meta substituents were obtained from the literature [27],
while σ+o for ortho substituents was calculated from the
formula σ+o = 0.66 σ+p [28].
Regression analyses were performed using SPSS soft-

ware version 16. Correlations were assessed by the cor-
relation coefficient (R2), standard error of the estimate
(SE), the number of data point (N), the least significant
difference (p), and the 95%-confidence intervals (in
parentheses) for each regression coefficient.

Results and discussion
Antioxidant and radical scavenging activities against
DPPH, hydroxyl and peroxyl radicals of a wide range of
natural (e.g. α-tocopherol, eugenol, thymol, carvacrol,
caffeic acid, vanillic acid syringic acid and gallic acid)
and synthetic phenolic compounds were examined; the
results are presented in Table 1. The structural diversity
of the used phenolic compounds (Figure 1) includes
monophenols with substituents frequently present in
natural phenols e.g. alkyl, alkoxy, ester and carboxyl
groups, besides many other electron donating and with-
drawing groups; in addition to polyphenols with 1–3 hy-
droxyl groups and aminophenols. Some common groups
e.g. alkyl, carboxyl, amino and second OH groups were in-
corporated in ortho, meta and para positions. Substituted
anilines and enols (e.g. ascorbic and 4-hydroxycoumarin)
as structurally and chemically related to phenols were also
included.

Structure-activity relationships (SAR)
DPPH has frequently been used as a reactive hydrogen
acceptor for the determination of radical scavenging
activity of various natural and synthetic compounds
[29]. Results listed in Table 1 indicate that the examined
compounds (51 compounds) expressed anti DPPH radical
activity ranged from 0 to 99.1%, 15 of them (entries 2, 4, 5,
7, 22–24, 29–31, 34–37, 43) exhibited high scavenging
activity (> 89.6). The fifteen highly active compounds
possessed some special structural features that can be
depicted in the following structure-activity relation-
ships: (1) all polyphenols (7 compounds) with a second
hydroxyl group in the ortho or para positions e.g. cat-
echol and hydroquinone showed high activity (98 and
97% respectively); however, the meta isomer (resorcinol)
showed very low activity (2.5%). This result can be
explained by the strong electron donation ability of the
hydroxyl group in ortho and para positions (σp

+ = − 0.92,
σo
+ = − 0.61) while the hydroxyl in meta position is e.w.g.

(σm = 0.12). It is well established that electron donating



Table 1 Radical scavenging and antioxidant activities of phenols, enols and anilines

Entry Compound % DPPH inh. Peroxyl inh. % OH inh. ksa % AOb activity % AOc activity

1 Phenol 2.3 0.0 0.4 0.83 0.0 0.0

2 Catechol 98.0 1.8 70.0 402.59 54.0 49.0

3 Resorcinol 2.5 0.8 5.1 9.40 4.0 5.0

4 Hydroquinone 97.0 2.1 67.0 360.50 54.0 47.0

5 2- Aminophenol 92.0 1.49 63.1 307.42 46.0 40.0

6 3-Aminophenol 20.2 0.7 7.3 13.82 7.0 2.0

7 4- Aminophenol 97.0 1.4 65.0 333.41 44.0 40.0

8 3- Nitrophenol 1.3 0.89 2.9 5.36 5.0 4.0

9 4- Nitrophenol 1.1 0.0 5.6 10.51 5.0 6.0

10 3-Chlorophenol 3.1 1.1

11 4- Chlorophenol 3.6 0.81 1.7 3.04 0.0 0.0

12 4-Hydroxybenzaldehyde 1.1 0.3 4.6 8.29 2.0 3.0

13 2-Hydroxyacetophenone 0.0

14 Phenol-4-sulfonic acid 0.3 0.9 3.4 6.08 1.0 1.0

15 Salicylic acid 1.3 0.9 8.9 17.14 1.0 2.0

16 3-Hydroxybenzoic acid 2.5 0.0 6.9 12.72 4.0 3.0

17 4-Hydroxybenzoic acid 1.8 0.56 2.5 4.48 3.0 1.0

18 Ethyl salicylate 1.2 0.81

19 Methyl salicylate 1.6 0.77

20 Ethyl 4-hydroxybenzoate 1.9 0.47

21 3,5-Dinitrosalicylic acid 0.8 0.0 4.3 7.19 0.0 1.0

22 3,4-Dihydroxybenzoic 89.6 2.41 35.4 93.44 57.0 51.0

23 2,5-Dihydroxybenzoic 95.0 2.62 49.0 88.47 63.0 60.0

24 Ethyl 2,5-dihydroxybenzoate 96.1 2.5

25 o-cresol 12.2 0.62

26 p- Cresol 15.5 0.52

27 Thymol 35.0

28 Carvacrol 33.9

29 Butylatedhydroxytoluene (BHT) 96.0 2.98 95.0 361.61 66.0 59.0

30 α-Tocopherol 96.2 68.8 373.77 47.0 45.0

31 Eugenol 98.1 97.0 389.81 63.0 60.0

32 Guaiacol(o-methoxyphenol) 28.3

33 Vanillic acid 25.1 0.8 2.7 5.03 2.1 2.3

34 Syringic acid 90.4 2.9 62.2 283.09 58.0 52.0

35 Gallic acid 92.0 3.09 65.0 331.20 61.0 59.0

36 Caffeic acid 91.2 2.78 53.5 196.29 62.0 57.0

37 Ascorbic acid 99.1 2.94 81.0 361.61 46.0 49.0

38 4- hydroxycoumarin 1.5 2.4 3.59 0.0 0.0

39 1-Naphthol 35.0 1.23

40 Aniline 8.7 8.6 16.59 2.0 6.0

41 p-Tuluidine 18.4

42 p-Anisidine 31.1 4.9 8.85 6.0 3.0

43 p-Phenylenediamine 90.1 66.0 347.78 43.0 49.0
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Table 1 Radical scavenging and antioxidant activities of phenols, enols and anilines (Continued)

44 o-Phenylenediamine 5.1 2.8 5.032 3.0 1.0

45 2,3-Diaminophethaline 2.9 5.5 9.95 5.0 4.0

46 Anthranillic acid 5.7

47 p-Aminobenzoic acid 4.6

48 m-Bromoaniline 0.0

49 p-Chloroaniline 0.0

50 o-Nitroaniline 0.0

51 p-Nitroaniline 0.0
a Bimolecular rate constant, ks × 10-7(M-1s-1).
b % Antioxidant activity in sunflower system.
c % Antioxidant activity in liver homogenate system.
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groups stabilize the resulted phenoxyl radicals through
inductive (as in alkyl substituents) or resonance (as in
OMe or NH2 substituents) effect; thus lower the O-H
bond energy and enhance the radical scavenging activ-
ity. In contrary, electron withdrawing groups stabilize
Figure 1 Structures of some of the examined phenolic, enolic and an
more the phenols and destabilize the resulted radicals
[30-32]. In addition, a hydrogen bonding can be formed
between the phenoxyl unpaired electron and the adja-
cent hydroxyl group in catechols that stabilizes the radi-
cals formed more than it does for the parent diols
ilinic compounds.
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[33-35]. It is also known that catechol and hydroquinone
undergo two hydrogen-atom transfer process to give the
stable o- and p-quinones respectively [10]. Ascorbic acid
is well known good antioxidant [36] and exhibited high
activity reached 99.1%. It could also undergo the two
hydrogen-atom transfer process to give the dehyroascorbic
acid [37]. (2) Similarly, o- and p-aminophenols showed
high activity (92 and 97% respectively) because of the
strong electron donating effect of the amino group in
these positions (σp

+ = − 1.30, σo
+ = − 0.86) and the pos-

sible formation of 2- and 4-iminoketones respectively.
However, m-aminophenol gave moderate activity (20.2%)
compared to resorcinol (2.5%), since the amino group is
still e.d.g. in the m-position (σm = − 0.16) while the hy-
droxyl group is e.w.g. (σm= 0.12) in the same position.
(3) Most other monophenols with various substituents
e.g. carboxyl (entries 15–17), ester (entries 18–20),
CHO (entry 12), CH3−CO (entry 13), SO3H (entry 14),
NO2 (entries 8–9) and Cl (entries 10–11) gave low activ-
ity (< 3.6%). However, the presence of one alkyl group as
in o- and p-cresol raised the activity to 12.2 and 15.5%
respectively compared to that of phenol (2.3%), while two
alkyl groups as in thymol and carvacrol (in o- and
m-positions) increased the activity to 35.0 and 33.9%
respectively; these results indicate that alkyl groups in
deoxyribo

KDR

AH
Ks

.OH

Scheme 1 Possible reactions of hydroxyl radical in the reaction mixtu
any position (o, m or p) stabilize the phenoxyl radicals
through inductive effect and thus enhance the
antradical activity. The activity of thymol and carvacrol
was previously reported [38]. Although three alkyl
groups in BHT gave high activity (96.0%), this activity
is exceptionally high where BHT showed special
antiradical mechanism [39]. The presence of methoxy
group alone (guaiacol) or with carboxyl group (vanillic
acid) gave moderate activity (28.3 and 25.1% respect-
ively) while two methoxy groups in syringic acid gave
high activity (90.4%). This result confirmed the impact
of alkyl and alkoxy groups as good e.d.g. in increasing
the electron density and stabilizing of the phenoxyl radi-
cals. However, it should be noted that methoxy group,
in contrary to alkyl groups, has to be in o- or p-position
to act as good e.d.g. as indicated by Brown parameter
(σp

+ = − 0.78, σo
+ = − 0.51). On the other hand, the

m-methoxy group works normally as e.w.g. as indicated
by sigma parameter (σm= 0.12) but the strong electron
withdrawing activity of an oxygen phenoxyl radical causes
the m-methoxy group to become weak e.d.g., σm

+ = −0.14
[40]. These results suggest that both alkyl and alkoxy
groups, in the proper positions, seem to enhance the
activity in additive way which could be applied and
examined in a QSAR study (Ali & Ali, personal
se

HOH  +  A.

P

re. Reaction rate = ks [OH] [AH] + kDR[OH] [DR].
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communications). (4) Anilines gave the same trends as
phenols; some of the preliminary aniline antioxidant
activity results were previously reported [41]. p-
Phenylenediamine, as might be expected, gave high activ-
ity (90.1%) as a result of electron donating effect of the
amino group and the possible two hydrogen-atom transfer
process leading to the formation of 1,4-diimine; however,
o-phenylenediamine gave low activity (5.1%) which could
be attributed to the strain energy manifested by the rela-
tively high heat of formation of the 1,2-diimine (ΔHF =
119.47 Kcal/mole) formed from the o-isomer compared to
that of 1,4-diimine (ΔHF = 73.41 Kcal/mole) resulted from
the p-isomer as deduced by MOPAC calculations. This
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Figure 4 Correlations between % DPPH inhibition and the antioxidan
and liver homogenate (B).
result is confirmed by the low activity expressed by the
2,3-diaminonaphthaline (2.9%). As in substituted phe-
nols, aniline has low activity (8.7%) while the p-methyl
group in p-toluidine raised the activity to 18.4% and
p-methoxy in p-anisidine has even higher effect (31.1%);
other substituents (carboxyl, bromo, chloro or nitro sub-
stituents) showed little negative effect.

Scavenging hydroxyl and peroxyl radicals
To examine the validity of using the simple DPPH test
as indicator for the activity towards other radicals, scav-
enging the OH radical, one of the most reactive radicals
presents in living cells [42,43], and peroxyl radical,
hibition
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usually formed naturally upon lipid peroxidation [15],
were determined; the results are listed in Table 1. The
trends of scavenging both hydroxyl and peroxyl radicals
are much similar to that of DPPH radical as presented
by eqs. 1 and 2 respectively and plotted in Figure 2.

% OH inhibition ¼ 0:46 �2:77ð Þ
þ 0:70 �0:04ð Þ % DPPH inhibition

N ¼ 32;R2 ¼ 0:894; SE ¼ 11:01; p < 0:001

ð1Þ
Peroxyl radical inhibition ¼ 0:48 �0:11ð Þ

þ 0:02 �0:00ð Þ % DPPH inhibition
N ¼ 32;R2 ¼ 0:793; SE ¼ 0:46; p < 0:001

ð2Þ

Thermodynamic vs kinetic of OH radical scavenging
activity
Although the % hydroxyl radical scavenging activity deter-
mines the ability of antioxidant to scavenge the hydroxyl
radicals, it does not give direct measure of the intrinsic
reactivity of these antioxidants. Good antioxidants should
have high scavenging activity (thermodynamic property)
and relatively high reaction rate (kinetic property); there-
fore, the second order rate constant (ks) of the H-atom
transfer from antioxidant to the hydroxyl radical was
determined in the deoxyribose assay. In this assay the
hydroxyl radicals may react with either the antioxidant
(AH) or the deoxyribose (DR) in parallel fashion mechan-
ism (Scheme 1).
The rate constants (ks) listed in Table 1 show, as

expected, a high reactivity of the hydroxyl radical to-
wards most compounds even those with low scavenging
activity, expressed by high rate constant that ranged
from 8.29 × 106 (phenol) - 4.03 × 109 (catechol) M-1s-1.
In addition, compounds with the highest DPPH and OH
radical scavenging activities showed also the highest rate
constant (8.85 × 108 – 4.03 × 109 M-1 s-1). The strong
correlation between % of OH radical inhibition and rate
constant is presented by eq. 3 and Figure 3.

% OH radical inhibition ¼ 4:72 �1:98ð Þ
þ 1:98� 10�8 �0:00ð Þ ks

N ¼ 32;R2 ¼ 0:937; SE ¼ 8:52; p < 0:001
ð3Þ

Antioxidant activity
Antioxidant activity against lipid peroxidation in two sys-
tems, sunflower oil and liver homogenate, was determined
(Table 1). The strong radical scavengers showed also good
antioxidant activity which implies similar structural re-
quirements and the dependence of antioxidant activities
on radical scavenging activities. The strong correlations
between antioxidant activities in both systems and DPPH
inhibition is presented by eqs. 4 and 5 respectively, and
Figure 4.

% antioxidant activity sunflower oilð Þ ¼ �0:34 �1:66ð Þ
þ 0:58 �0:03ð Þ % DPPH inhibition

N ¼ 32;R2 ¼ 0:941; SE ¼ 6:61; p < 0:001

ð4Þ
% antioxidant activity liver homogenateð Þ ¼ �0:39 �1:57ð Þ

þ 0:54 �0:03ð Þ % DPPH inhibition
N ¼ 32;R2 ¼ 0:940; SE ¼ 6:25; p < 0:001

ð5Þ
Therefore, presence of good e.d.g. with the ability to

form stable quinone-like product or the presence of at
least three alkyl or two alkoxy groups is still required for
phenols or anilines to possess good antioxidant activity
in oils or living cells.

Conclusions
These results imply that the structural features and factors
required for good anti DPPH activity are also required for
both anti OH and peroxyl radical activities and antioxi-
dant activities in various systems. The factors are either
the presence of o- or p-hydroxyl or amino groups that
could form quinone-like product, or the presence of a
number of alkoxy (in o or p-position) and/or alkyl groups
(in o, m or p-position) to stabilize the resulted phenoxyl
radical. Kinetic measurements showed that strong antioxi-
dants with high activity have also high reaction rates indi-
cating that factors stabilizing the phenoxyl radicals lower
also the activation energy.
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