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Abstract

Background: Heterogeneous β-Alkyl (C12H25/C18H37) polyethyleneoxy (n = 0-20) propionamides [R(EO)nPD]
represent new “hybrid” nonionic-ionic colloidal structures in the field of surface-active products (technical products).
These “niche” compounds have three structural and compositional characteristics that also define their basic
colloidal properties: mixture of R and PEO chain homologues; specific conformations due to the PEO chains; and
the presence of side products from the addition of higher alcohols, polyethyleneglycols and traces of water to
acrylamide. The proposed major objective of this paper is the basic informative colloidal characterization (functional
classification, HLB balance, surface tension, critical micelle concentration) in direct correlation with the structural
changes in the homologous series of LM(EO)nPD and CS(EO)nPD. The structures were obtained either indirectly by
cyanoethylation followed by partial acid hydrolysis of the corresponding β-propionitriles, or directly by the
nucleophilic addition under alkaline catalysis of linear higher alcohols C12H25/C14H29 (7/3) (LM) and C16H33/C18H37

(CS) as such and heterogeneous polyethoxylated (n = 3-20) to acrylamide monomer, through an adapted classic
reaction scheme.

Results: In the series of basic colloidal characteristics investigated the structure-surface activity dependence is
confirmed. Their indicative character for R(EO)nPD is based on the assumption that the structures studied are not
unitary (heterogeneous) because: a) the hydrophobic chains C12H25/C18H37 have been grouped in two variants,
C12H25/C14H29 (LM); C16H33/C18H37 (CS), each with an internal mass ratio of 7/3; b) the hydrophilic polyoxyethylene
chains (n = 3-20) have polydisperse character; the meaning and value the oligomerization degree, n, is that of
weighted average. In these conditions the surface tension increases proportionally with the oligomerization degree
of the polyoxyethylene chain, while the critical micelle concentration decreases in the same homologous series as
well as with the increase of the hydrophobic chain in the C12H25 to C18H37 series. A mechanism of micellization is
proposed, consistent with the experimental data recorded and the hypotheses known from the consulted literature.

Conclusions: The idea of the obtaining and basic colloidal characterization of heterogeneous R(EO)nPD is justified.
The knowledge and constructive approach of the heterogeneous character confirm the basic surface-active
potential of R(EO)nPD, the structure-colloidal characteristics dependence and justifies further, more extensive
research.
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Background
Higher primary, secondary and tertiary aliphatic amides,
known for their low solubility in aqueous floats are valued
sanitation components (“cosurfactants”) by association in
various anionic, anionic-nonionic, etc., surface-active col-
loidal systems as such or salified as formates and acetates,
respectively [1-5].
Heterogeneous R(EO)nPD represent a relatively small

new range of surface-active compounds with still limited
audience due to their recent reporting [6] in the market
of surface-active compounds and the absence of research
in the field, marked by three distinct aspects:

✓ the heterogeneous character of the hydrophilic
polyoxyethylene chain (PEO) (the statistical dispersion
of the oligomerization degree, n) [2,3,7,8] and of the
hydrophobic chain (R =C12H25 to C18H37), respectively;

✓ specific conformational characteristics of the PEO
chains depending on the size of the oligomerization
degree, n [8-14];

✓ the possible and very probable presence of some
byproducts characteristic of the industrial synthesis
of polyethoxylated higher alcohols, R(EO)nH (free
higher alcohols, ROH, free polyethyleneglycols, PEGn

and traces of water of hygroscopicity) [3,8,15].

The study of the informative basic colloidal characteristics
of R(EO)nPD as such has recently come to our attention with
the intention to associate these surface-active structures in
perspective as cosurfactants in future sanitation recipes in
the CIP (“clean in place”) system, together with nonionic
soaps belonging to the same structural family [alkaline and
ammonium β-alkyl C12H25/C14H29 (7/3) (LM) and C16H33/
C18H37 (7/3) (CS) polyethyleneoxy (n = 0-20) propionates] R
(EO)nPC

- [16-20].
Research similar to that presented in this paper has

not been reported in the published and consulted litera-
ture in the last seven decades, although after 1977
[21-23] the interest for PEGylation as an inner PEGn at-
tachment process is constantly increasing.
PEGylation involves the successive covalent grafting of

new structures at the two terminals (free hydroxyl func-
tional groups) of polyethyleneglycols. The newly formed
covalent bond can temporarily “mask” the “active vector”
support (host).
The polyethoxylated higher alcohols (C8H17 - C18H37) can

be considered as monoderivatized polyethyleneglycols (pri-
mary PEGylation fragment). Obtained industrially by the re-
action of linear or branched higher alcohols with ethylene
oxide under an inert atmosphere, basic catalysis at 90-150°C,
they are characterized as a mixture of polyoxyethylene chain
homologues with statistically distributed molecular weight,
along with varying amounts of free higher alcohols, free
polyethyleneglycols and traces of water (Table 1) [8].
The increase of the average polyethoxylation degree, n,
result in the widening of the spectrum of PEO chain
homologues [8]. Separation into unitary structures
through physico-chemical methods (molecular distillation,
liquid-liquid extraction, column chromatography, etc.) is
difficult [16], but the synthesis of the “homogeneous”
polyoxyethylene PEO chain becomes possible through
several “step by step” versions [8]: condensations with
monohalogeno-glycols [24]; catalytic reduction of esters
[25]; the Williamson ether synthesis [26]; etherification of
higher n-alkyl tosylates (C8H17 - C18H37) [27].
The Williamson scheme of synthesis of “homoge-

neous” highly polyethoxylated higher alcohols (C8H17 -
C18H37), known as two variants, with all the difficulties
of synthesis, purification, separation, remains the most
widely used method by:

✓ successive attachment lower oxyethylene units (n =
2-3) to a “homogeneous” hydrocarbon chain [28];

✓ purification and subsequent attachment of oxyethylene
units (n≥ 3) to the “homogeneous” hydrocarbon chain [29].

The second variant, characterized by yields not
exceeding 60%, laborious and inefficient separation of
the higher alcohols is less recommended [8].
The chemistry and applications of derivatized

polyoxyethylene chains (PEO) as such or condensed with
polyoxypropylene chains (PPO) led to biocompatible
structures extensively studied and covered in the litera-
ture over the past four decades [23,30].
After the reporting of proteins covalently grafted with

PEGn (conjugates) [21,22] and the pioneering attempts of
(Davis F. et al. 1979), their potential in the conditioning of
active vectors in the most diverse areas was recognized.
PEGylation as an experimental technique benefits from a
wide coverage, at the same time with the chemistry,
analytical methods and technical applications that have
become more and more elaborate.
The favorable endorsement (after 1990) of the new

PEGn conjugates by the FDA in the U.S.A. confirmed
the maturity of these products and technologies.
New PEGn architectures justify the research efforts in

mono- or bis-derivatization of PEO chains.
Are accepted with convincing arguments [23,30] the simi-

larities between the primary, secondary and tertiary structure
of the macromolecular biochains in polyethyleneglycols, as
such and derivatized, compared to proteins, lipids and
polysaccharides in the active and passive transfer processes
of material biocarriers of utilities.
Also “highly qualified” (“specialized”) structures have

been designed and built, in the range of PEGn-L (vegetal
lipids) conjugates, employing processing and evaluation
block schemes based on the insertion of PEO chains in
the most various areas of activity.



Table 1 The main physico-chemical characteristics of higher alcohols (ROH) (mixture of homologues) and of heterogeneous polyethoxylated higher alcohols
R-(EO)n-H

Product name Hydrocarbon
chain (R)

Notation Appearance Hydrocarbon chain
distribution (%)2)

Physico-chemical characteristics

C12 C14 C16 C18 Polyethyleneglycols
content PEG (%)

Higher
alcohols (%)

Polyethoxylated
higher alcohols,
mixtures of chain
homologues (%)

H2O (%)

Lauryl/myristyl alcohol C12H25/C14H29 LM-O-H colorless fluid 70 30 - - - 99.55 - -

Cetyl/stearyl alcohol C16H33/C18H37 CS-O-H waxy colorless solid - - 70 30 - 99.24 - -

Polyethoxylated (n = 3) lauryl/myristyl alcohol C12H25/C14H29 LM-(EO)3-H colorless fluid 70 30 - - 0.43 (−)1) 15.03 (−)1) 84.24 (99.12)1) 0.30 (−)1)

Polyethoxylated (n = 3) cetyl/stearyl alcohol C16H33/C18H37 CS-(EO)3-H colorless solid - - 70 30 0.52 17.36 82.78 0.32

Polyethoxylated (n = 6) lauryl/myristyl alcohol C12H25/C14H29 LM-(EO)6-H viscous colorless fluid 70 30 - - 0.61 4.58 88.36 0.58

Polyethoxylated (n = 6) cetyl/stearyl alcohol C16H33/C18H37 CS-(EO)6-H waxy colorless solid - - 70 30 0.74 5.18 85.15 0.49

Polyethoxylated (n = 9) lauryl/myristyl alcohol C12H25/C14H29 LM-(EO)9-H colorless paste 70 30 - - 0.78 0.88 92.45 0.68

Polyethoxylated (n = 9) cetyl/stearyl alcohol C16H33/C18H37 CS-(EO)9-H waxy colorless solid - - 70 30 0.93 1.25 89.63 0.88

Polyethoxylated (n = 12) lauryl/myristyl alcohol C12H25/C14H29 LM-(EO)12-H waxy colorless solid 70 30 - - 0.95 0.25 97.48 0.90

Polyethoxylated (n = 12) cetyl/stearyl alcohol C16H33/C18H37 CS-(EO)12-H waxy colorless solid - - 70 30 1.18 0.98 93.47 1.02

Polyethoxylated (n = 16) lauryl/myristyl alcohol C12H25/C14H29 LM-(EO)16-H waxy colorless solid 70 30 - - 1.19 - 98.52 1.15

Polyethoxylated (n = 16) cetyl/stearyl alcohol C16H33/C18H37 CS-(EO)16-H waxy colorless solid - - 70 30 1.47 0.73 96.51 1.42

Polyethoxylated (n = 20) lauryl/myristyl alcohol C12H25/C14H29 LM-(EO)20-H waxy colorless solid 70 30 - - 1.79 - 98.11 1.58

Polyethoxylated (n = 20) cetyl/stearyl alcohol C16H33/C18H37 CS-(EO)20-H waxy colorless solid - - 70 30 1.93 0.46 98.23 1.74
1) values in parentheses refer to “homogeneous” polyethoxylated (n = 3) lauryl/myristyl (7/3) alcohol.
2) determined by gas chromatography [15,16].
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Therefore the paper sets as its major objectives the indica-
tive basic colloidal characterization (functional classification,
surface tension, critical micelle concentration, hydrophilic-
hydrophobic balance) in the heterogeneous homologous
series of LM and CS, respectively, polyethyleneoxy (n = 0-20)
propionamides (Figure 1), obtained by a classic reaction
scheme [15-17,19,20]:

✓ indirectly by the nucleophilic addition of higher
alcohols, as such and polyethoxylated (n = 0-20),
initially purified from traces of water, free higher
alcohols, and polyethyleneglycols, respectively, to
acrylonitrile, followed by the partial acid hydrolysis
of β-substituted propionitriles to β-substituted
propionamides (Figure 1a);

✓ directly by the nucleophilic addition of higher
alcohols, as such and polyethoxylated (n = 0-20),
initially purified from traces of water, free higher
alcohols, and polyethyleneglycols, respectively, to
acrylamide under basic catalysis (Figure 1b).

Results and discussions
The main colloidal characteristics of the surface-active
compounds (technical products) depend on their struc-
ture and heterogeneous composition. R(EO)nPD as
mixtures with widespread distribution of hydrophobic,
R, and hydrophilic PEO, respectively, chain homologues,
manifest themselves cumulatively through the individual
colloidal behavior of the present unitary structure and
through mutual interdependencies. Therefore the experi-
mental values of the basic main colloidal characteristics,
evaluated in such a casuistry, also have an indicative
R O (EO)nH H2C CH CONH2
HO-

20-50oC
higher alcohols 

polyethoxylated initially 
purified from traces of 

water, free higher 
alcohols, and 

polyethyleneglycols, 
respectively

acrylamide

R O (EO)n CH2CH2CN

a

HO-

H2C CH CN
acrylonitrile

(Fe2+)
30-50oC

β-R-polyethyleneoxy 
(n=3-20) propionitriles

H2O

H+

8

R=C12

Figure 1 The reaction scheme for the preparation of C12H25/C14H29 (7
propionamides.
character even if they are the result of the mathematical
processing of a considerable number of measurements. The
selection and use of the most appropriate methods of
surface-active evaluation can also generate comments for
and against, justified both by the fidelity of the recording
and interpretation of the colloidal phenomenon, but some-
times mostly by the absence of universally accepted operat-
ing protocols. In this work standardized methods are
preferred, nationally approved and recognized in Europe or
completed with ISO recommendations if the case. Labora-
tory evaluations performed on the homologous series (n =
0-20) of the two sets of β-substituted higher aliphatic
propionamides purified prior to the synthesis (Figure 1) fall
into this casuistry.
Mathematical processing of the indicative basic col-

loidal characteristics of the structures of the homologous
series studied allowed the formulation of structure-
surface activity dependencies (empirical mathematical
relationships, most of them with correlation coefficients
between 0.9 and 1) and the most probable mechanisms
of surface activity.

Functional classification
To assess and explain why LM(EO)nPD and CS(EO)nPD
possess surface-active properties, some general considerations
on their amphiphilic molecular structure are necessary.
Synergistic cumulation in the same surface-active

structural architecture of the amide functional group
with one or more polyoxyethylene chains (hydrophilic)
with different oligomerization degrees (n) led to the first
polyethoxylated amides. The structures represent the
first higher aliphatic amides with a polyoxyethylene
R O (EO)n CH2CH2CONH2

β-R-polyethyleneoxy 
(n=3-20) propionamides

b

0-90oC

H25/C14H29 (7/3) (LM); C16H33/C18H37 (7/3) (CS)

/3) C16H33/C18H37 (7/3) polyethyleneoxy (n = 3-20)



Figure 3 Block diagram of operations of the process of
elimination by liquid-liquid extraction of polyethyleneglycols
(PEGn) from the mixture of dehydrated “heterogeneous”
polyethoxylated (n = 3-20) higher alcohols R(EO)nH (adapted
from Schick, M., 1987) [8].
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chain inserted between a determinant hydrophobic
group and a polar nonionic hydrophilic group (the pri-
mary amide function).
Due to their composition, specific primary and sec-

ondary (conformational) structure, R(EO)nPD have a
pronounced heterogeneous character. The idea of their
basic colloidal characterization becomes indicative, being
the resultant of the colloidal manifestation of 24 unitary
homologous structures (4 hydrophobic R series, each
with 6 hydrophilic PEO series) (Figure 2). By the homo-
geneous R(EO)nPD structure in the sense of this work
we mean a strictly unitary β-substituted polyethoxylated
higher aliphatic propionamide (Figure 2). Similarly 23
more unitary homologous (“homogeneous”) structures
can be mentioned. Exhaustive isolation into individual
(unitary) structures, laborious, conceptually bold, but
difficult to accomplish, did not constitute a major
objective of the paper also due to the pronounced mani-
festation of the “neighboring effects” (“sympathy effects”)
between two or more adjacent chain homologues
[16,17], with similar physico-chemical constants that do
not allow a certain exhaustive separation.
Of the three issues mentioned in the background, only

the influence of secondary products was eliminated a
priori by repeated liquid/liquid extractions in appropri-
ate solvent systems (Figures 3, 4). The other two
variables in the system can be eliminated simultaneously,
if the heterogeneous structural character of the R and
PEO chains is removed through a directed “step by step”
Williamson-type synthesis [16,17].
The inclusion of β-alkyl (C12H25/C18H37) polyethyleneoxy

(n = 3-20) in the category of surface-active agents involves
the nomination of the hydrophilic (lipophobic)/hydrophobic
Figure 2 The network of the heterogeneous R(EO)nPD homologous se
(lipophilic), polar/non-polar (amphiphilic) domain, which
determines their colloidal character. The many possibilities
for modifying the determinant hydrophobic fragment
between the C12H25/C14H29 and C16H33/C18H37 structural
variants require additional information (the mutual
interchain mass ratio of 7/3). The determinant hydrophilic
fragment, although relatively simple structurally (polyether
chain), also requires additional structural specifications
with respect to the conformation and the size of the
oligomerization degree (n) of the PEO chain, respectively
(Figure 5). The nonionic hydrophilic primary amide func-
tional group grafted at end of β-alkyl substituted
polyethyleneoxy propionamides presents low basicity and po-
larity due to antagonistic electromeric effects in its structure
[6]. The most obvious confirmation is that the structures
salified as formates (HCOO-) and acetates (CH3COO-), re-
spectively, can be theoretically considered “salts”, even if they
ries.



Figure 4 Functional structure of β-alkyl (R = C12H25 to C18H37) polyethyleneoxy (n = 3-20) propionamides [R(EO)nPD] [31].
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are extremely unstable and decompose in aqueous solutions
with recovery of primary amides. If we interpret these
developments in terms of acid–base equilibrium and the pKa

values of the two conjugate structures (Figure 6), we are
convinced of these realities [32].
Also important for the colloidal behavior of R(EO)nPD

is the potential interaction between the two polar hydro-
philic structural fragments: the primary amide group
and the PEO chain. The former contains three elements
from the second row of the periodic table with increas-
ing electronegativity C (IV) < N (V) < O (VI). The pres-
ence and involvement of non-bonding electrons of
nitrogen and oxygen in the p-π conjugation has major
consequences on the properties of the function as a
whole: low basicity (Kb ca. 10-14); ability to form hydro-
gen bonds; amidic conjugation; the predominantly flat
conformation of the partially double carbon-nitrogen
bond with limitation of free coaxial rotation and tauto-
merism (equilibrium between amide and iminol forms)
[6,33]. All these support the flexible cationic character of
the functional group as a whole [32,33] which can inter-
act with the PEO conformation of different sizes.
From the comparative analysis of the elemental com-
position it is found that the logarithmic dependence
equation in Figure 7 with a correlation coefficient
R2>0.99, confirms the reduction of the proportion of
amide nitrogen in both homologous series simultan-
eously with the increase of the oligomerization degree
(n) of the polyoxyethylene chain in the structure. Up to
the corresponding value (n ≤ 12) of the homologous
series the nitrogen content is higher for the LM chain,
then for n ≥ 12 it is very similar, virtually identical for
both homologous series. Therefore simultaneously with
the increase of the weight of the polyoxyethylene chains
in the architecture of β-substituted aliphatic propionamides
studied, the weight and influence of the primary amide
group, already low as nonionic hydrophilic group, decreases
even further.
With reduced polarity (basicity) and decreased influence

on the whole structure, they still form inter- and intramo-
lecular hydrogen bonds, keeping the conformation planar
due mainly to the p-π conjugation in the structure.
The second major structural unit of the β-substituted

propionamides studied is represented by the polyoxyethylene
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alcohol 96%) of “heterogeneous” polyethoxylated (n = 3-20) higher alcohols R(EO)nH, of free higher alcohols (ROH) (adapted from
Schick, M., 1987) [8].
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chains, determinant hydrophilic fragment with increasing
oligomerization degree.
Their properties influence the overall colloidal behavior

of LM(EO)nPD and CS(EO)nPD, the mechanisms of ac-
tion (orientation effects at the interface, mutual associ-
ation affinities, development of the hydrophilic character,
etc.). The dependence between the ethene oxide content
and the oligomerization degree (n) of the polyoxyethylene
chain (Figure 8) in the homologous series studied follows
a logarithmic mathematical relationship with a correlation
coefficient R2>0.99. Between the two dependence curves
referring to the LM and CS hydrophobic chains, the dif-
ference in the ethylene oxide content (ΔEO) determined
experimentally (average value), ΔEO= 4.337, suggests a



Figure 6 Acid–base equilibrium in the “salification” process of R(EO)nPD with formic and acetic acid (a) and electron mobility in the
primary amide functional group (b).
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close evolution between it and the calculated value
(Table 2). The explanation is that the polyethoxylated
higher alcohols (technical products) employed initially as
raw materials were purified exhaustively of free higher
alcohols and polyethyleneglycols.
Changes in the various structural units present in

surfactants strongly affect the interfacial properties. Such
properties as surface tension reduction, micelle forma-
tion etc. show marked changes with variations in both
the hydrophilic and hydrophobic portions of the surfac-
tant molecule, reflecting the processes occurring on mo-
lecular level. Changes in these properties caused by such
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series of LM(EO)nPD and CS(EO)nPD, respectively.
factors as the length and nature of hydrophobic group,
the nature of the hydrophilic group and its position in
the molecule, and the presence or absence of an ionic
charge are described and explained in terms of the mo-
lecular processes involved [34].

Physico-chemical characterization of R(EO)nPD
Optimizing the solubility and hence their basic colloidal
characteristics has been a constant concern of researchers
in this area. “Salification” as formates or acetates practic-
ally limited accessing higher aliphatic amides only to the
acid range of the sanitation protocols.
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The water solubility of EO fatty amides derivatives essen-
tially depends on both the temperature and HLB, which can
be easily calculated indicatively according to Griffin’s equa-
tion: HLB = E/5; where E is the weight percentage of
ethylene oxide units in the considered molecule.
A simple approximation of water solubility under

current conditions can be made by considering the ratio
of ethylene oxide units (EO) to the carbon number (N).
If this ratio EO/N is below to 1/2, solubility is barely
achieved; if this ratio EO/N is equal to 1/2, solubility is
fairly good; if this ratio EO/N is equal to 3/2, solubility
is very high. The maximum surface activity of nonionics
is observed near the “cloud point” [1-4].
The products of the studied homologous series are

alkylpolyethyleneglycol ethers, heterogeneously derivatized
Table 2 The main physico-chemical characteristics of LM(EO)n
No. Product

1. β-lauryl/myristyl (7/3) oxy-propionamide

2. β-cetyl/stearyl (7/3) oxy-propionamide

3. β-lauryl/myristyl (7/3) polyethyleneoxy (n = 3) propionamide

4. β-cetyl/stearyl (7/3) polyethyleneoxy (n = 3) propionamide

5. β-lauryl/myristyl (7/3) polyethyleneoxy (n = 6) propionamide

6. β-cetyl/stearyl (7/3) polyethyleneoxy (n = 6) propionamide

7. β-lauryl/myristyl (7/3) polyethyleneoxy (n = 9) propionamide

8. β-cetyl/stearyl (7/3) polyethyleneoxy (n = 9) propionamide

9. β-lauryl/myristyl (7/3) polyethyleneoxy (n = 12) propionamide

10. β-cetyl/stearyl (7/3) polyethyleneoxy (n = 12) propionamide

11. β-lauryl/myristyl (7/3) polyethyleneoxy (n = 16) propionamide

12. β-cetyl/stearyl (7/3) polyethyleneoxy (n = 16) propionamide

13. β-lauryl/myristyl (7/3) polyethyleneoxy (n = 20) propionamide

14. β-cetyl/stearyl (7/3) polyethyleneoxy (n = 20) propionamide
1 Kjeldahl method; 2 cleavage with concd. HI (d = 1.7 – 1.9).
at the second end with the propionamide fragment.
Characterized primarily physico-chemically (appearance, vis-
cosity, water solubility), the “parent compound” (n = 0) of
both homologous series of hydrocarbon chains (LM and CS)
stands out from the rest of representatives, being solid, waxy
white-gray (20°C), insoluble in cold and hot (60°C) water,
where even in dilute solutions form opalescent, inhomogen-
eous multiphase systems. From these considerations it can-
not be considered properly speaking surface active.
Following the homologous series both for the determinant

hydrophobic fragment, LM and CS, and for the determinant
hydrophilic one, (EO)n (n = 3-20), respectively, viscosity
increases, and the white-gray color in the solid state becomes
constantly yellow-brownish in the melt (fluid state), while the
solubility and appearance of the aqueous solution evolves from
PD and CS(EO)nPD

Nitrogen content (%) Ethylene oxide content (%)

Determined1 Calculated Determined1 Calculated

5.21 5.26 - -

4.32 4.36 - -

3.50 3.52 32.97 33.22

3.03 3.09 28.57 29.11

2.63 2.64 49.53 49.87

2.37 2.39 44.78 45.10

2.10 2.12 59.48 59.87

1.93 1.95 54.58 55.20

1.75 1.76 65.84 66.55

1.64 1.65 61.70 62.16

1.44 1.44 72.25 72.62

1.36 1.36 68.33 68.66

1.21 1.22 76.20 76.83

1.16 1.17 72.96 73.25
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homogeneous opalescent to clear homogeneous. These
considerations are found for the homologous series of LM
(EO)nPD and CS(EO)nPD, respectively, synthesized from
the corresponding polyethoxylated higher alcohols, previ-
ously purified from free higher alcohols (ROH), free
polyethyleneglycols (PEG)n and traces of water. When
employing for the study the homologous series of unpurified
heterogeneous R(EO)nPD [16,18,20], the experimental data
recorded were significantly modified, because these contained:
decreasing amounts of R-O-PD, in the 17.3% - 0.46%
range; polyethyleneglycols bis-derivatized with propionamide
fragments between 0.56% - 1.93%, both components with
surface-active properties, able to form mixed micellar
architectures similar to those presented below.

Composition and structural characteristics of R(EO)nPD
The industrial alkylation of higher alcohols with ethylene
oxide (EO) is a method widely used in obtaining
polyethoxylated higher alcohols, R(EO)nH. Inevitably a
technical product is obtained, where can be found in vary-
ing proportions (Table 1), besides R(EO)nH themselves
(mixture with a statistical distribution of polyoxyethylene
chain homologues), polyethylenglycols (PEGn), free higher
alcohols (R-OH) and traces of hygroscopically retained
water [3,4,7,8].
These are bearing hydroxyl groups, able to actively par-

ticipate through nucleophilic addition to the activated
double bond (−Is; -Es) in acrylonitrile and acrylamide, with
the formation of products that influence determinantly
the colloidal behavior of R(EO)nPD (Figure 9).
From the analysis of the experimental values (Table 1)

on the “heterogeneous” higher polyethoxylated alcohols,
raw materials in the synthesis of R(EO)nPD, the following
aspects with consequences on their subsequent behavior
can be observed:

✓ the share of the free higher alcohols (ROH) in
technical products is high at the beginning of the
homologous series (n = 3) and superior for the CS
homologous series as against the LM one, but
decreases with increasing the size of the PEO chain
up to complete for elimination the R(EO)nH series
(n = 16;20);

✓ the share of the free polyethyleneglycols (PEGn)
increases in both homologous series of hydrophobic
chain simultaneously with the increase of the
oligomerization degree (n), more so in the CS series
as against the LM one;

✓ the water content (pronounced hygroscopicity of all
representatives of the homologous series) increases
with the size of the PEO chain, more pronouncedly
for the CS series as against the LM one;

✓ the share of the mixture of PEO chain homologues
for the polyethoxylated higher alcohols themselves,
lower for n = 3 (81-84%) exceeds 93% for the rest of
the homologous series (n = 6, 9, 12, 16, 20);

✓ gas-chromatographic analysis of the purified
polyethoxylated higher alcohols R(EO)nH or the
nucleophilic addition products R(EO)nPN, R(EO)n
PD, confirms the broad statistical distribution of the
PEO chain homologues (for the purified technical
product LM(EO)3PN n = 3, the range of PEO chain
homologues includes the interval n = 1-5, doubles if
the hydrophobic L/M chain homologues are also
considered [15,16,35].

From Table 1 it may be noted that in the heteroge-
neous alcohol LM(EO)3H are present all the side
products previously specified in the paper.
After purification of free alcohol LM-OH,

polyethyleneglycols PEGn and traces of water (Figures 3,
4), purified “heterogeneous” polyethoxylated (n = 3-20)
lauryl/myristyl (7/3) alcohols are obtained. It was further
interesting knowing the actual distribution of the hydro-
phobic (L/M) and hydrophilic PEO, respectively, chain
homologues.
It is known [15,16] from the gas-chromatographic analysis

that in the composition of LM(EO)3PN and LM(EO)3PD:

✓ the PEO chain homologues for both homologous
hydrophobic series cover the interval n = 1-5,
although the determined average value of the
oligomerization degree, n, in the purified product
is n = 3;

✓ the share of the PEO chain homologues for both
homologous hydrophobic series, maximum at the
beginning of the series (n = 1), decreases
continuously in the series n = 1-5;

✓ the total percentage share of the PEO chain
oligomers for the two L and M hydrocarbon chain
homologous series is in a ratio of 2.33, similar to 7/3;

✓ lauryl and myristyl iodides, formed after the cleavage
of the PEO chain with hydroiodic acid, extracted
from the system and gas-chromatographically
analyzed, have confirmed the L/M = 7/3 mass ratio
between the hydrophobic chains.

The strict nomination of each R and PEO chain
homologue was performed using as standards lauryl/myristyl
(7/3) alcohol LM-OH, “homogeneous” polyethoxylated
(n = 3) lauryl/myristyl (7/3) alcohol LM(EO)3H (the adapted
Williamson method) (Figure 10) and “homogeneous” β-
lauryl/myristyl (7/3) polyethyleneoxy (n = 3) propionitrile,
LM(EO)3PN [15,16].
The aforementioned standards, gas-chromatographically

eluted in compliance with the same operating parameters,
confirmed the same retention times with their similar
homologues in purified heterogeneous LM(EO)3PN [15,16].
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Figure 9 Scheme of the nucleophilic addition of PEGn and R-OH (side products) in R(EO)nH (technical products) to acrylamide.
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Conformational characterization of the PEO chains.
Consequences for R(EO)nPD
The rediscovery of crown ethers (CR) and their role
as phase-transfer catalysts (PTC) (Pedersen, C.,
1967) [36] represented the decisive impulse in the
theoretical and practical conformational study of
cyclic and acyclic PEO chains, as such and
derivatized.
The striking analogy CR could not help but formulate

questions and provide convincing answers about the
spatial geometry of PEO chains.
(O-CH2CH2)3 -OHH Na+

inert atm

-1/2
triethyleneglycol (PEG-3)

C12H25/C14H29 (7/3)-OH +

CH3

SO2Cl

H

(-H

lauryl/myristyl alcohol (7/3)
(LM-OH)

p-toluene 
sulfochloride 

(Ts-Cl)

CH3

SO2-O-C12H25/C14H29 (7/3)

LM-TS

(O-CH2CH2)3 -O  NaH

PEG-3-Na

+

Figure 10 Reaction scheme for obtaining “homogeneous” lauryl/myri
The hypotheses formulated, valence angles and inter-
atomic distances that allow free coaxial rotation and offer
additional “constructive conformational details” about the
“strain-free-polyoxyethylene chain”, about the modes of
“packing” in a “macromolecular lattice”, specify that:

✓ the “monoclinic unit cell” contains 4 “meanders” in
its structure [8-12];

✓ the “meander” contains 9 oxyethylene units (EO),
(4 × 9 = 36 EO units in a monoclinic cell structure)
[8,9];
osphere

 H2

(O-CH2CH2)3 -O  NaH

monosodium triethyleneglycol 
(PEG-3-Na)

O-

Cl)

CH3

SO2-O-C12H25/C14H29 (7/3)

lauryl/myristyl tosylate (7/3) (LM-TS)

CH3

SO3
-Na+

C12H25/C14H29 (7/3)-O-(CH2CH2-O)3-H

sodium p-toluenesulfonate

+

"homogeneous" polyethoxylated 
(n=3) lauryl/myristyl (7/3) alcohol

styl (7/3) polyethoxylated (n = 3) alcohol LM(EO)3H.
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Table 3 Critical EO unit numbers for alkali-metal ions
[12,14]

Alkali cation Double adduct Triple adduct

Li+ 12 24

Na+ 12 24

K+ 15 28

Rb+ 17 31

Ca2+ 19 34

(See figure on previous page.)
Figure 11 Conformational models of polyoxyethylene (PEO) chains [9]. a) “zig-zag” planar “meander” (Staudinger, H., 1960; Kehren, M. and
colab., 1957); b) “zig-zag” “meander”, in contraction-relaxation equilibrium; c) stratified “zig-zag”; d) “zig-zag” “meander”, stratified and intercalated
in contraction-relaxation equilibrium.
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✓ the “repetition interval” accepted is at 19.5 Å
[13,37-40];

✓ each EO unit is “twisted” from the anterior one, so
that the main PEO chain is “distorted” and returns
to the initial conformation at every tenth “step”
(19.5 Å) [41-44];

✓ in the “meander” conformation an EO unit has
(average values) a length of 1.9 Å and diameter of 4 Å;
as against the “zig-zag” conformation with the geo-
metric parameters of 3.5 Å and 2.5 Å, respectively [7].

Subsequent experimental facts [42-45], Figure 11, also
confirmed for the first time the approximate dimensions
of the coordination “helical cavity” (ca. 6 EO units/so-
dium cation and ca. 7 units EO/potassium cation,
respectively).
Currently it is accepted that the geometry of the “co-

ordination cavity” is flexible, mobile, dependent on the
PEO chain’s length, the geometry of the generally
coordinated entities, the PEO chains being also affected
by the “cooperation” or “competition” effects of the oxy-
gen atoms in the rest of the PEO chain.
Recent literature confirms [12,14,44] (Figure 11):

✓ different behavior in solution of the PEO chains
from that in unsolvated solid phase, dependent on
the chain and dispersion medium;

✓ the “meander” conformation (in plane) helical (in
space) is regarded as certain in solution for n ≥ 9,
and in solid state for n ≥ 20;

✓ the contraction/dilatation (extension) of the
polyoxyethylene PEO chains is dependent on the
physico-chemical parameters employed;

✓ the geometric coordinates (diameter 4.5 Å and 2.5 Å,
respectively; area 28 Å2 and 19 Å2, respectively) are
flexible and conformation-dependent.

In the cases of coexisting C12H25(EO)nH and crown
ether in equal molar concentration, each mass spectrum
was dominated by the cationized C12H25(EO)nH rather
than cationized crown ether. This may indicate that the
cation affinity of helical POE is significantly higher than
that of cyclic POE, although the cation selectivity of the
crown ether was significantly higher than that of POE
surfactants [13,14].
As the EO unit number increased, the ESI

(Electrospray ionization) mass spectra could exhibit the
multiply charged C12H25(EO)nH (average) cationized by
alkali metal ions in addition to their singly cationized
species [14,37,38].
Yokoyama, Y. et al. [12,14] introduced the critical EO

unit numbers necessary to start producing the multiply
cationized molecules, which were very dependent on the
guest cation diameters as summarized in Table 3.
Therefore, such theoretical molecular modeling simu-

lations are very indicative of the experimental findings.
Since one helical turn consisting of 6 EO residues can be
recognized in the simulation, the apparent inner diameters
of the horizontal section of the helical structure when in-
cluding K+ are thought to be similar to the hole diameter
of 18-crown-6 [45] (Figure 12).
Throughout our research, the obtained results have

contributed decisively to the confirmation of the direct
participation and the formulation of the conformational
role of the PEO chains by:

✓ our own experimental observations according to
which in the nucleophilic addition reactions
(cyanoethylation, amidoethylation) of polyethoxylated
higher alcohols purified of alcohols, polyethyleneglycols
(PEGn) and water, the processing yields under similar
conditions increase proportionally with the
oligomerization degree, n, of the PEO chain [16-20];

✓ the progress reported in the literature on the
knowledge of conformational performances of the
PEO chains in solid, liquid (solution) state, and the
various investigation methods used.

After nearly a century of investigations, similarly to
other classes of macromolecular compounds, in the case
of polyethyleneglycols (PEGn) and their derivatives
(glyme, oligoglyme, PEGylated compounds), respectively,
it can also be argued that besides a primary structure
there is a secondary (conformational) and a tertiary (mi-
cellar macromolecular architectures) structure.
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The main features of these spatial architectures with
consequences for the study of heterogeneous β-alkyl
polyethyleneoxy (n = 3-20) propionamides R(EO)nPD are:
dimensional flexibility, transfer mobility, the existence of
the “meander”, “zig-zag”, “helix” conformations with vari-
able geometry, free coaxial rotation C-C/C-O, absence of
“ring tensions” specific to rigid structures.
Recent studies [14,16,46-48] have also confirmed the

effects of the oligomerization degree (n) and temperature
in the 20-40°C range on the partition coefficients of
“homogeneous” polyethoxylated lauryl alcohol in the
series n = 2-9 at the water-isooctane interface. These
investigations have led to the structuring of a database ne-
cessary for the evaluation of the same partition coefficient
for heterogeneous polyethoxylated lauryl alcohol (mixture
of PEO chain homologues belonging to the same struc-
tural family).
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Figure 12 Conformational elements, bond angles and lengths (Å), of
different sizes [16-20,45].
The aforementioned considerations also contributed to
the adapted schematic representation of the primary mi-
cellar structures of heterogeneous R(EO)nPD (Figures 13).

Adsorption of heterogeneous R(EO)nPD (n = 3-20) at the
aqueous solution-air interface. Formation of micelles
β-Alkyl polyethyleneoxy (n = 3-20) propionamides are lyo-
philic association colloids which group instantly in aque-
ous floats as macromolecular associations (lyophilic
micelles) at the value corresponding to the critical micelle
concentration (expressed as mol/L × 10-5) (Figure 14e,f ).
The classic, basic colloidal characterization of heteroge-

neous R(EO)nPD does not lead to relevant interpretations.
For “homogeneous” R(EO)nPD, the main basic colloidal

characteristics to be determined would be [34]: surface ex-
cess concentration (Γcmc); surface area demand per mol-
ecule (Amin); efficiency in surface tension reduction (pC20);
the coordination with acyclic polyoxyethylene (PEO) chains of
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the effectiveness of surface tension reduction (σcmc); crit-
ical micelle concentration (CMC); measure of the ten-
dency of the surfactant mentioned to adsorb at the
aqueous/air interface relative to its tendency to form
micelles in the bulk surfactant solution (CMC/C20); stand-
ard free energy of micellization (ΔG°mic) and β-parameter.
In the case of heterogeneous R(EO)nPD, the diversity

of composition, structure and conformations does not
allow for such an approach, but only the indicative
evaluation of the following surface-active parameters:
HLB balance, surface tension (σcmc) and critical micelle
concentration (CMC).
In the homologous series of heterogeneous hydrophobic

(R) and hydrophilic (PEO) chains of R(EO)nPD, subse-
quently can also be indicatively formulated structure-
surface activity correlations.
Experimental area/molecule data (Aexpt) at the air/

aqueous solution interface after mixing, ideal mixing
area/molecule data (Aideal), based upon area/molecule
data at the interface before mixing, and regular solution
theory have been used to explain the values of surfactant
molecular interaction β parameters observed in mixed
monolayers and mixed micelles [34,43].
Steric effects occur simultaneously with the dimen-

sional change of the hydrophobic chain, and the increase
of the geometric coordinates of the PEO chains with the
oligomerization degree, n, reduce the interchain electro-
static repulsions. These also induce the modification
of the β-parameter [34,49]. The β-parameter, β = WAB -
(WAA + WBB/2)RT, evaluated for the quantification of
molecular interactions of two distinct surface-active
components A and B in a mixture, involves the evalu-
ation of the mutual molecular interaction energy W at
temperature T(°K). In the casuistry of heterogeneous
R(EO)nPD is necessary the knowledge of the mutual
interactions of 24 R and PEO chain homologues
(Figure 2), two by two.
The critical micelle concentration, CMC, was determined

by surface tension techniques. In the case of surface tension
measurements, the CMC values are taken as the molar
concentrations at the intersection of the two linear parts of
the relationship γ = f(logC), above and below the
discontinuity.
Corroborating the aforementioned conformational data

of PEO in the literature with the structure of various R
(EO)nPD, in Figure 13 are presented several concrete
instances of association at the hydrophobic or hydrophilic
separation interface (polar and nonpolar media) of R(EO)n
PD for n = 3 and 6. Micellar architectures with polar and
nonpolar cavities are thus structured as “solubilization”,
sequestration and transfer spaces of potential entities in
the sanitation practice.
In view of the participation of β-substituted higher

aliphatic propionamides as cosurfactants in sanitation
recipes, the simultaneous or alternative presence of nor-
mal and reverse micelles must be accepted as a very
probable reality (Figure 13).

Adsorption of heterogeneous R(EO)nPD homologues
mixtures at the aqueous solution-air interface. Formation
of mixed micelles
Mixtures of two or more different homologues in the R
(EO)nPD series show positive or negative “synergistic”
interdependences [34,49]. The overall interfacial properties
of the mixture of homologues can be more pronounced
than those of a “homogeneous” (unitary) R(EO)nPD struc-
ture. Consequently in many technological applications
mixtures of various surface-active structures are preferred
and the interactions between them afford an understanding
of the role of each individual structure and make possible
their selection in a rational systematic manner for the
optimization of the colloidal properties.
The synergisms or antagonisms of a series of structural

homologues of R(EO)nPD and the relationship with the
fundamental colloidal characteristics, that is the role of
cosurfactants, represents an important area and one of
the objectives of this work. The indicative conclusions of
such a study in perspective can substantiate the selection
of the R(EO)nPD unitary structures in the structuring of
surface-active couples that would ensure optimized ap-
plicative interfacial properties (Figure 14).
β-Alkyl (R) oxy propionamides R-O-PD can be considered

“parent compound” or “parent compound” products for the
homologous series of R(EO)nPD (n = 3-20), since the only
“ether bridge” newly created through nucleophilic addition
does not provide water solubility. The interest for knowing
the possibility of integrating R-O-PD (with no surface active
properties) and the rest of the homologous series in different
sanitation systems (solubilization) becomes evident if it is ad-
mitted the reality that polyethoxylated (n = 3-20) higher ali-
phatic β-propionamides, as technical products, inevitably
contain at the beginning of the homologous series (n = 3-6)
these structures that affect the individual colloidal
characteristics. Knowing on the other hand the conform-
ational properties of the PEO chains (Figure 14), the remark-
able possibility of mutual interaction (“sequestration” and
micellar solubilization), we proposed the association of R-O
-PD (n = 0)/R(EO)nPD (n = 12) in the (1/1) molar ratio,
followed by the evaluation of the indicative cumulative col-
loidal characteristics. The experimental values obtained were
interpreted through mixed micellar associations with positive
synergistic effects, capable of cumulated surface activity
(Figure 14). In many surface-active recipes in technological
practice, mixtures of surfactant compounds dominate the
global colloidal behavior relative to the individual colloidal
characteristics of the participants due to certain resulting
effects. Also in many cases commercial technical aspects (in-
homogeneous raw materials, side products of processing or
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(See figure on previous page.)
Figure 13 Structure and alternative formation of normal (a) and reverse (b) micelles with the participation of R(EO)nPD: 13.1. Principial
schematic representation of the association/adsorption mode at the interface in a spherical micellar architecture with LM(EO)nPD (n≥ 8) (helix
conformation) in nonpolar (a) and polar (b) medium, respectively; 13.2. Principial schematic representation of the association/adsorption mode at
the interface in a spherical micellar architecture with LM(EO)nPD (n = 3,6) (“zig-zag” conformation) in nonpolar (a) and polar medium (b),
respectively.
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unreacted products) define the overall surface-active behav-
ior. The mutual molecular interactions provide with high
probability the associated colloidal systems (mixed) with the
perspective of an optimized colloidal behavior [34].
Most R(EO)nPD (n = 3-20) studied (Table 1) are water-

soluble surface-active compounds with the exception of
the homologue (n = 0).
In this work the corresponding values of surface ten-

sion and critical micelle concentration, respectively, for
β-alkyl C12H25/C14H29 (7/3); C16H33/C18H37 (7/3) oxy
(n = 0) propionamide shall refer to the associated system
1/1 of β-propionamide (n = 0) with β-propionamide
(n = 12) (water-soluble). The mixed micelle (n = 0)/
(n = 12) allows for surfactant activity cumulated with
overall positive synergistic effects (Figure 14).

The hydrophilic/hydrophobic balance in the homologous
series of heterogeneous R(EO)nPD. Structural correlations
The cosurfactant quality of R(EO)nPD in binary or tern-
ary surfactant system, designed for sanitation by the CIP
(“clean in place”) process, can also be appreciated
C
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R
a) b) c)
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H2N

R= C12H25/C14H29 (7/3) (LM); C

CONH2
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e) f)

Figure 14 Schematic representation of the conformation of R(EO)nPD
the mixed architecture: e) R-O-PD/R(EO)nPD n = 8 (1/1) and f) R-O-PD/
semiempirically with the help of the HLB scale. In the
case of the structures containing PEO chains as the
dominant hydrophilic group, the contribution of the
amide function can be insignificant, and the simplified
GRIFFIN relationship HLB = E/5 (where E is the per-
centage by mass of ethene oxide (EO) in the surface-
active structure) can offer sufficient elements for the
proposed characterization.
Thus one can predict the role of wetting agents,

cleaning agents and of micellar solubilization of dirt
present on contact interfaces throughout sanitation.
The introduction of polyoxyethylene chains with vari-

able (n = 3-20) oligomerization degree in the series of β-
substituted aliphatic propionamides changes controllingly,
gradually, the hydrophilic/hydrophobic index (HLB)
(Figure 15). The dependence after a logarithmic relation-
ship suggests through the correlation coefficient R2>0.98 a
high similarity to reality. Two aspects are additionally
noted: a difference ΔHLBaverage = 0.845 between the two
series of β-substituted aliphatic propionamides LM and
CS and a range of HLB values covering the interval 5.71-
R

d)

C
O C

NH2

O

16H33/C18H37 (7/3) (CS)

R

CONH2

H2NOC

R

H2NOC

R

R

: a) n = 2; b) n = 3; c) n = 5; d) n = 8 and of the conformation of
R(EO)nPD n = 3 (1/2), respectively.
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15.24, specific to all colloidal competences (dispersants,
emulsifiers, wetting agents, sequestrants, foaming agents,
defoamers, co-surfactants etc.) (Table 4).
The HLB balance in the series of the structure

homologues of heterogeneous R(EO)nPD will be strongly
influenced by the evolution of the lyophilic-lyophobic equi-
librium inside it. Increasing the average oligomerization de-
gree (n) of the PEO chain increases the hydrophilicity and
shifts the indicative HLB values towards the upper end of
the variation range, after a logarithmic mathematical rela-
tionship (Table 4) (Figure 15).

The critical micelle concentration in the homologous
series of “heterogeneous” R(EO)nPD. Structural
correlations
In the same homologous series of β-alkyl polyethyleneoxy
substituted aliphatic propionamides the critical micelle
concentration decreases simultaneously with increasing
the oligomerization degree (n) of the polyoxyethylene
chains, after a polynomial mathematical relationship with
the correlation coefficient R2>0.99 (Figure 16). In this case,
too, the experimental values of CCM for the series with
the LM hydrophobic chain are higher by ΔCCMaverage =
21.91 mol/L × 10-5 from those of the series with the CS
hydrophobic chain, which leads us to the conclusion that
over the entire range of the homologous series, for a cer-
tain value of CCM of the CS series at the same
oligomerization degree (n) of the polyoxyethylene chain,
the CCM value of the LM series is higher on average by
21.91 mol/L × 10-5 than for the first series.
Equating the molar concentration in mass units (g/L)

for the representatives of the two homologous series, we
find that:

✓ the CCM value (g/L) decreases by 0.81 g/L in the series
of polyoxyethylene chain homologues (n = 3-20) for LM
and by 1.08 g/L for CS, respectively;

✓ for the same oligomerization degree (n), the CCM value
(g/L) is higher for the LM compared to the CS series.

Interpreting the two previous statements, is confirmed
that the efficiency of surface tension reduction for the
homologous series CS is superior to the homologous
series LM.

The surface tension in the homologous series of
heterogeneous R(EO)nPD. Structural correlations
Surface tension is dependent on the structural characteristics
of the studied heterogeneous LM(EO)nPD and CS(EO)nPD,
respectively. Since the interface equilibrium must be
established in a short time, in the sanitation practice and
washing floats the phenomenon acquires a special practical
significance. Two aspects are required to be reviewed separ-
ately: the capacity of surface tension reduction, the
concentration of β-alkyl polyethyleneoxy (n = 3-20)
propionamides necessary to achieve a certain effect of surface
tension reduction, and the efficiency of surface tension reduc-
tion expressed by the minimum value at which β-alkyl
polyethyleneoxy (n = 3-20) propionamides are able to reduce
the surface tension.
Assimilating heterogeneous R(EO)nPD into the group

of “hybrid” ionic-nonionic surface-active compounds, it
can be stated with sufficient accuracy that they will
present the sum of individual colloidal properties of
higher aliphatic amides (the ionic part) and of
polyethoxylated higher alcohols (the nonionic part). The
capacity and effectiveness of surface tension reduction in
aqueous solution of R(EO)nPD generally evolves in-
versely proportional to the modification of the size of
the hydrophilic PEO chain, the structure (unsaturated,
branched) of the hydrophobic chain, the movement of
the ionized hydrophilic group from the middle to end of
the R chain, the intensity of the mutual electrostatic re-
pulsion [34]. The transfer of an R and PEO chain
homologue from the solution to the air-separation inter-
face depends on the size, mobility and electrical charge
(and mutual repulsion, respectively) between them.
In the surface-active structures of heterogeneous R(EO)n

PD evaluated (Figure 17), increasing the oligomerization
degree of the PEO chain (n > 6) induces an increased cap-
acity of surface tension reduction, simultaneously with de-
creasing the effectiveness of adsorption at the water/air
interface (Figure 18). The phenomenon is justified by the
unfavorable steric effects resulting from the conformational
characteristics of the hydrophilic PEO chains for n > 6, the
difficulties of “packing” at the interface and, last but not
least, the intensification of the electrostatic repulsions.
Scenarios of this type diversify in the case of mixtures of dif-
ferent R and PEO chain homologues (Figure 14).
In the homologous series of β-substituted higher aliphatic

propionamides, the surface tension increases simultan-
eously with the oligomerization degree (n) of the
polyoxyethylene chains after a polynomial mathematical re-
lationship with correlation coefficients R2>0.99 (Figure 17).
The experimental values reported for the LM series are
higher by Δσaverage = 1.558 mN/m than those of the CS
series, which leads also to the conclusion the effectiveness
of surface tension reduction in the homologous CS series is
superior to that of the LM series (Figure 17).
It can also be noted that for the same oligomerization

degree (n) of the polyoxyethylene chain, the effectiveness
of surface tension reduction is greater for the lower hydro-
phobic (hydrocarbon) chains than for the higher ones.
In the homologous series of heterogeneous R(EO)nPD,

the capacity of adsorption at the water/air separation
interface tends to increase due to the hydrophilic weakly
ionic polar primary amide group (Figure 13) for same
hydrophobic chain R. The electrostatic repulsions due to
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the structure are low and favor the degree of “packing”
at the interface.
Increasing the oligomerization degree (n) in a hom-

ologous series is proportional to ethene oxide content,
and therefore with the hydrophilicity and solubility
of the structure. That is why β-substituted aliphatic
propionamides (n = 3), with lower solubility than the
higher homologues of the series (n = 20), have a more
pronounced hydrophobic character, therefore higher
tendency of orientation at the separation interface (e.g.,
water/air) and effectiveness of surface tension reduc-
tion. The situation reverses for the homologues with
(n = 20) (Figure 18). The same explanation is valid for
the argumentation of the difference in effectiveness
between the LM and CS series.
The interpretations made earlier about the effective-

ness of surface tension reduction in the homologous
series of β-substituted aliphatic propionamides studied
can also be quantified if we compare the recorded ex-
perimental values to the value of the surface tension of
double distilled water for distilled water (Figure 19).
Preliminary indicative evaluations of the parameter

pC20 for heterogeneous R(EO)nPD, the negative loga-
rithm of concentration of heterogeneous R(EO)nPD in
Table 4 Correlation of HLB with the average
oligomerization degree (n) and the scope in the
homologous series of heterogeneous R(EO)nPD [2,3]

n HLB Scope of heterogeneous R(EO)nPD

3 6 Emulsifier W/O

6 8-10 Wetting agent

9 10-12 Emulsifier O/W

12 12-14 Detergent, emulsifier O/W

16 13-15 Detergent

20 15-16 Micellar solubilization agent
the bulk phase required to produce a 20mN/m (dyn/cm)
reduction in the surface tension of the solvent [34,50],
led to inconclusive values with wide dispersion, without
the possibility of even approximate correlation and of
formulation of evolution trends. Attempting to explain
the phenomenon, we resorted to liquid-chromatographic
determination of the distribution of the hydrophilic PEO
chain homologues for n > 6. It was found that the statis-
tical distribution of the PEO chain homologues no longer
presents a symmetry detected for n < 6, but instead the
shift of the major share of the PEO homologues towards
values much larger than the average value determined of
the oligomerization degree (Δn = 2-3 EO units) [15-17].
These confirm the role of the homogeneous (unitary)

character of R(EO)nPD in the evaluation of the basic col-
loidal properties.

Materials and methods
Materials

1. heterogeneous β-alkyl (C12H25/C14H29) (7/3)
polyethyleneoxy (n = 0-20) propionamides [LM(EO)n
PD] (mixture of hydrophobic R chain homologues in
a mass ratio (7/3) and hydrophilic polyoxyethylene
PEO chain homologues (n = 0-20), respectively)
(Department of Food Technologies, Faculty of Food
Processing Technology, Banat’s University of
Agricultural Sciences and Veterinary Medicine of
Timişoara, Romania) [6];

2. heterogeneous β-alkyl (C16H33/C18H37) (7/3)
polyethyleneoxy (n = 0-20) propionamides [CS(EO)n
PD] (mixture of hydrophobic R chain homologues in
a mass ratio (7/3) and hydrophilic polyoxyethylene
PEO chain homologues (n = 0-20), respectively)
(Department of Food Technologies, Faculty of Food
Processing Technology, Banat’s University of
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Agricultural Sciences and Veterinary Medicine of
Timişoara, Romania) [6];

3. polyethoxylated (n = 3-20) lauryl/myristyl (7/3)
alcohols [LM(EO)nH] (technical products), purified
of free lauryl/myristyl (7/3) alcohol,
polyethyleneglycols (PEGn) and traces of water
(mixture of hydrophobic R chain homologues in a
mass ratio (7/3) and hydrophilic polyoxyethylene
PEO chain homologues (n = 0-20), respectively) (S.C.
Romtensid S.A. and Department of Food
Technologies, Faculty of Food Processing
Technology, Banat’s University of Agricultural
Sciences and Veterinary Medicine of Timişoara,
Romania) [6,8,15] (Table 1);

4. polyethoxylated (n = 3-20) cetyl/stearyl (7/3) alcohols
[CS(EO)nH] (technical products) purified of free
cetyl/stearyl (7/3) alcohol, polyethyleneglycols (PEGn)
and traces of (mixture of hydrophobic R chain
homologues in a mass ratio (7/3) and hydrophilic
polyoxyethylene PEO chain homologues (n = 0-20),
respectively) (S.C. Romtensid S.A. and Department of
Food Technologies, Faculty of Food Processing
Technology, Banat’s University of Agricultural
Sciences and Veterinary Medicine of Timişoara,
Romania) [6,8,15] (Table 1);

5. “homogeneous” polyethoxylated (n = 3) lauryl/
myristyl (7/3) alcohol [LM(EO)3H] (Department of
Food Technologies, Faculty of Food Processing
Technology, Banat’s University of Agricultural
Sciences and Veterinary Medicine of Timişoara,
Romania) [17,18];

6. “homogeneous” β-lauryl/myristyl (7/3)
polyethyleneoxy (n = 3) propionitrile [LM(EO)3PN]
(Department of Food Technologies, Faculty of Food
Processing Technology, Banat’s University of
Agricultural Sciences and Veterinary Medicine of
Timişoara, Romania) [17,18];
7. lauryl/myristyl alcohol (LM-OH), mass ratio (7/3) (S.
C. Romtensid S.A./Alfol 1214 Condea-Germany)
(Table 1);

8. cetyl/stearyl alcohol (CS-OH), mass ratio (7/3) (S.C.
Romtensid S.A./Alfol 1618 Condea-Germany)
(Table 1);

9. N,N,N-trimethyl-N-β-lauryl/myristyl (7/3) oxy-
ethylammonium chloride (LM-O-EC-1.1.1.) [15,16];

Reagents (Sigma-Aldrich, Merck): acrylamide; organic
solvents; acrylonitrile (inhibited with 35–45 ppm hydro-
quinone monomethyl ether); triethylene glycol; p-
toluenesulfonyl chloride

Methods

1. Determination of the cloud point of nonionic
surface-active agents obtained by condensation of
ethylene oxide [51];

2. Determination of surface tension. Ring variant [52];

Air/water solution surface tension were measured
continuously using a Krüss K20S automatic
tensiometer (Germany), equipped with a duNuoy Pt-
Ir ring (resolution ±0.01 mN · m-1) at 25 ± 0.1°C. Sets
of experiments were taken at intervals until no
significant change occurred in the tension [48].
Equilibrium surface tension data were reproducible
within 0.2 mN · m-1.
The CMC values of heterogeneous R(EO)nPD (mol/
L · 10-5) were determined by surface tension
techniques. In this case of measurements the CMC
values are taken as the molar concentration at the
intersection of the two linear parts of the relationship
σ = f(logC) above and below the discontinuity [48].
Initial concentration was 1 mol/L · 10-2.
Heterogeneous R(EO)nPD were purified above 99%,
the purity was determined by titration in nonaqueous
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dipolar aprotic medium (DMSO, DMF) with HClO4

0.1 N [53]. The average molecular weight (Mav) was
evaluated with the relationship: Mav = MR + n · 44 +
MC3H6NO, where MR represents the average
molecular weight of the hydrophobic chains LM
C12H25/C14H29 (7/3) and CS C16H33/C18H37 (7/3),
respectively, determined by gas chromatography
[15,16], and n the average oligomerization degree of
the hydrophilic polyoxyethylene PEO chain,
determined iodometrically [35].

3. Polyethoxylated derivatives. Iodometric
determination of oxyethylene groups [35].

4. Preparation of “homogeneous” polyethoxylated
lauryl/myristyl (7/3) alcohol LM(EO)3H. Is
performed by following the reaction scheme in
Figure 10 [15,16].
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Figure 18 Variation of the effectiveness of surface tension reduction
chain in the homologous series of LM(EO)nPD and CS(EO)nPD, respec
Conclusions
Heterogeneous β-alkyl C12H25/C14H29 (7/3) and C16H33/
C18H37 (7/3), respectively, polyethyleneoxy (n = 3-20)
propionamides R(EO)nPD, nonionic surface-active struc-
tures, accessible under mild processing conditions, offer
a wide range of colloidal properties by the controlled
directing of the hydrophilic/hydrophobic share in their
structure.
The synergistic cumulation in the same structural

architecture of polyoxyethylene chains with various
oligomerization degrees (n = 3, 6, 9, 12, 16, 20) (average
values of the statistical distribution) was confirmed for
the first time to be a realistic method of optimizing the
initial limited solubility of classic higher amides with the
exception of R-O-PD, “parent compound of the homolo-
gous series”.
Although falling into a limited “niche” of the surface-

active spectrum through composition, structure, meth-
odology of production, heterogeneous R(EO)nPD have
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strong connections with other areas of general interest
of knowledge (supramolecular chemistry, coordinative
chemistry, PEGylation, conformational chemistry etc.).
The heterogeneous R(EO)nPD studied constitute a

new “hybrid” domain in the category of surface-active
compounds, with three defining characteristics which
mark decisively their basic colloidal properties:

✓ the heterogeneous character (series of homologues),
due to the dispersion of the oligomerization degree of
the hydrophilic PEO chains and determinant
hydrophobic R chain;

✓ the particular conformational characteristics of the
PEO chains, depending on the average oligomerization
degree, n;

✓ the possible and very probable presence of side
products, specific to the industrial synthesis of
polyethoxylated higher alcohols, (free higher alcohols,
polyethyleneglycols, traces of water).

The differences between the “homogeneous” and “het-
erogeneous” character of R(EO)nPD have also led to
limiting the possibilities for a colloidal classic investigation
compared to a proper unitary surface-active structure.
The heterogeneous R(EO)nPD studied were obtained

from polyethoxylated higher alcohols LM(EO)nH, R and
PEO chain homologues, after purification of free higher
alcohols, polyethyleneglycols and traces of water. The
operation was performed by repeated liquid/liquid
extractions in various solvent systems: ethyl acetate/
saturated NaCl solution/chloroform; 96% ethyl alcohol/
petroleum ether.
The presence of these structural and compositional

components defined the heterogeneous character of R(EO)n
PD. This was confirmed through the comparative gas-
chromatographic analysis of heterogeneous LM(EO)nPN [β-
lauryl/myristyl (7/3) polyethyleneoxy (n = 3) propionitrile]
with “homogeneous” LM(EO)3PN (reference standard)
obtained by the adapted Williamson synthesis.
This approach allowed the evaluation of the basic col-

loidal properties indicatively (hydrophilic/hydrophobic
balance, surface tension, critical micelle concentration).
The comparative integrated evaluation of the literature
data on the conformational behavior of PEO chains and
the extended electronic system in the polar hydrophilic
amide group, allowed the formulation of mechanisms
for interaction and micellar association in the homolo-
gous series of R(EO)nPD, able to justify their colloidal
manifestations. The usefulness of complex scientific
efforts towards heterogeneous surface-active systems
argue towards accessing R(EO)nPD as co-surfactants
along with nonionic soaps, alkaline or ammonium β-
alkyl (R) polyethyleneoxy (n = 3-20) propionates, [R(EO)n
PC-M+], in sanitation recipes.
The indicative colloidal evaluations presented allowed

the formulation of informative structure-surface-active
characteristics correlations and mathematical processing
with correlation coefficients R2 ≥ 0,58.
The working premises formulated initially, the proposed

major objectives of the study, together with the work
strategies applied, will broaden interest in diversifying the
category of ionic-nonionic surface-active compounds, but
also for further research to complete the expressed
hypotheses.
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