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Abstract 

Montelukast sodium (MLK) and Levocetirizine dihydrochloride (LCZ) are widely prescribed medications with promis-
ing therapeutic potential against COVID-19. However, existing analytical methods for their quantification are unsus-
tainable, relying on toxic solvents and expensive instrumentation. Herein, we pioneer a green, cost-effective chemo-
metrics approach for MLK and LCZ analysis using UV spectroscopy and intelligent multivariate calibration. Following 
a multilevel multifactor experimental design, UV spectral data was acquired for 25 synthetic mixtures and mod-
eled via classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), and genetic 
algorithm-PLS (GA-PLS) techniques. Latin hypercube sampling (LHS) strategically constructed an optimal validation 
set of 13 mixtures for unbiased predictive performance assessment. Following optimization of the models regard-
ing latent variables (LVs) and wavelength region, the optimum root mean square error of cross-validation (RMSECV) 
was attained at 2 LVs for the 210–400 nm spectral range (191 data points). The GA-PLS model demonstrated superb 
accuracy, with recovery percentages (R%) from 98 to 102% for both analytes, and root mean square error of calibra-
tion (RMSEC) and prediction (RMSEP) of (0.0943, 0.1872) and (0.1926, 0.1779) for MLK and LCZ, respectively, as well 
bias-corrected mean square error of prediction (BCMSEP) of -0.0029 and 0.0176, relative root mean square error 
of prediction (RRMSEP) reaching 0.7516 and 0.6585, and limits of detection (LOD) reaching 0.0813 and 0.2273 for MLK 
and LCZ respectively. Practical pharmaceutical sample analysis was successfully confirmed via standard additions. We 
further conducted pioneering multidimensional sustainability evaluations using state-of-the-art greenness, blue-
ness, and whiteness tools. The method demonstrated favorable environmental metrics across all assessment tools. 
The obtained Green National Environmental Method Index (NEMI), and Complementary Green Analytical Procedure 
Index (ComplexGAPI) quadrants affirmed green analytical principles. Additionally, the method had a high Analyti-
cal Greenness Metric (AGREE) score (0.90) and a low carbon footprint (0.021), indicating environmental friendli-
ness. We also applied blueness and whiteness assessments using the high Blue Applicability Grade Index (BAGI) 
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and Red–Green–Blue 12 (RGB 12) algorithms. The high BAGI (90) and RGB 12 (90.8) scores confirmed the method’s 
strong applicability, cost-effectiveness, and sustainability. This work puts forward an optimal, economically viable 
green chemistry paradigm for pharmaceutical quality control aligned with sustainable development goals.

Keywords Montelukast sodium, Levocetirizine dihydrochloride, Chemometrics, Latin hypercube design, Greenness 
evaluation, Whiteness assessment, Blueness evaluation

Introduction
The analytical chemistry field faces pressing challenges 
regarding the environmental sustainability of conven-
tional pharmaceutical analysis techniques [1, 2]. Many 
established methods diverge from sustainable develop-
ment objectives, relying extensively on toxic reagents, 
non-renewable resources, and equipment-intensive 
procedures that impose major ecological hazards and 
material waste burdens [3–6]. Chromatographic tech-
niques epitomize these deficiencies, necessitating copi-
ous organic solvents like acetonitrile and methanol 
with immense emissions from production and trans-
port. Additionally, the intricate instrumentation and 
infrastructure mandate immense energy and financial 
expenditures, rendering chromatographic platforms 
unattainable for under-resourced laboratories and 
propagating global analytical disparities [7].

This status quo demands urgent solutions through 
pioneering analytical techniques embracing green ana-
lytical chemistry (GAC) and white analytical chemis-
try (WAC) philosophies [8, 9]. The widely embraced 
12 GAC Principles delineate pragmatic guidelines like 
minimizing material inputs, preventing waste, utiliz-
ing renewable materials, and enabling real-time analy-
sis with minimal pre-treatment. Complementarily, 
WAC focuses on economical, adaptable, easily dissemi-
nated methods to democratize analytical science and 
overcome global analytical inequities. By emphasiz-
ing decreased hazards, instrumentation burdens, and 
costs, WAC facilitates universal adoption. Within this 
context, UV–visible spectrophotometry (UV–vis) has 
emerged as an excellent technique for furthering GAC 
and WAC objectives. Requiring only inexpensive rea-
gents and basic equipment with minimal waste, UV–vis 
aligns well with GAC aspirations and WAC accessibility 
goals [10, 11].

However, direct pharmaceutical quantification often 
fails due to substantial spectral overlaps obscuring indi-
vidual component signals like active pharmaceutical 
ingredients. This motivated the integration of UV–vis 
with chemometrics, establishing a synergistic combi-
nation extracting meaningful chemical information 
from complex backgrounds, quintessential in analyti-
cal chemistry [12]. Thereby transforming UV spectro-
photometry into a value-added green analytical tool 

suitable for economical, routine pharmaceutical quality 
control, as evidenced in recent literature [13–15].

Nevertheless, prevailing chemometrics studies pre-
dominantly use random data splitting for training and 
validation subsets [14, 15]. While simple to implement, 
random partitioning risks insufficiently representing 
the full modeled chemical space, frequently causing 
biased accuracy estimates conflicting with sustainabil-
ity objectives like reliability and resource efficiency. To 
address this significant limitation, we strategically lev-
erage the Latin Hypercube sampling (LHS) design, sys-
tematically dividing each modeled variable into equal 
probability strata and sampling each to ensure excel-
lent coverage and balance when constructing validation 
sets [13]. Thereby enabling robust, unbiased assess-
ment of predictive capabilities on new samples. Com-
pared to excessive random sampling, LHS provides 
equivalent predictive performance testing with sub-
stantially fewer validation experiments. This enhances 
greenness through more efficient resource utilization 
while preventing misleading model accuracy estimates 
that could compromise pharmaceutical quality control 
adoption. Thus, LHS holds immense untapped poten-
tial for developing reliable, sample-efficient chemomet-
rics methodologies aligning with sustainable growth.

Propelled by the potential of LHS and multivariate 
UV spectrophotometry for sustainable pharmaceuti-
cal analysis, this work pioneers LHS for constructing 
validation sets when quantifying active pharmaceutical 
ingredients via chemometrics. We coupled LHS with 
genetic algorithm optimization of the most informa-
tion-rich spectral subsets to maximize predictive per-
formance. To demonstrate capabilities, two dissimilar 
extensively used pharmaceuticals were targeted—mon-
telukast sodium (MLK) and levocetirizine dihydrochlo-
ride (LCZ). In 2020, MLK was the 14th most prescribed 
drug in the United States with over 31 million prescrip-
tions, owing to its use as a leading repurposed COVID-
19 therapeutic [16, 17]. Meanwhile, LCZ attained over 
3 million 2020 prescriptions due to its synergistic 
administration with MLK as an anti-COVID agent [18]. 
Nevertheless, existing literature lacks green analytical 
methods for quantifying this vital MLK-LCZ combina-
tion to support sustainable pharmaceutical manufac-
turing and quality control.
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MLK (Fig.  1) is 2-[1-[[(1R)-1-[3-[2-(7-chloroquinolin-
2-yl)ethenyl]phenyl]-3-[hydroxypropan-2yl)phenyl]pro-
pyl]sulfanylmethyl]cyclopropyl] acetic acid sodium salt. 
LCZ (Fig. 1) is (2-(4-((R)-(4-chlorophenyl)phenylmethyl)-
1-piperazinyl)ethoxy) acetic acid dihydrochloride. While 
several techniques have quantified both drugs in com-
bination, including spectroscopic [19–21], HPLC meth-
ods [22–26], two TLC methods [26, 27], and one UPLC 
method [28], these remain expensive, complex, utilize 
non-green solvents, and are unsuited for routine analy-
sis. This necessitates alternative techniques harmonizing 
with GAC and WAC principles to balance efficacy and 
eco-friendliness. To our knowledge, no chemometric 
methods incorporating green–blue-white analysis have 
been reported to simultaneously determine MLK and 
LCZ.

This work contributes to addressing these gaps by com-
bining UV–vis spectroscopy’s green advantages with 
multivariate calibration and strategically constructed 
LHS validation sets to optimize accuracy across the mod-
eled pharmaceutical space. We further incorporated 
cutting-edge sustainability metrics spanning greenness, 
blueness, and whiteness to enable multifaceted com-
parisons with existing methods. The overarching objec-
tives are: (1) construct enhanced multivariate models 
via LHS and genetic algorithms for selective MLK and 
LCZ analysis without chromatographic separation; (2) 
demonstrate chemometrics as a valuable green analyti-
cal alternative for economical, routine quality control; (3) 
comprehensively evaluate sustainability using tools like 
NEMI, ComplexGAPI, AGREE and carbon footprint to 
affirm favorable greenness; (4) spearhead “blueness” and 
“whiteness” assessments via pioneering BAGI and RGB12 

metrics to validate analytical performance, cost-effective-
ness, and potential for widespread pharmaceutical labo-
ratory implementation.

Experimental
Instrumentation and software
A Shimadzu UV-1800 double-beam spectrophotometer 
equipped with 1 cm quartz cells was utilized for spectral 
data acquisition. The UV-Probe software version 2.42 
controlled the measurements, obtained at a 1.0 nm slit 
width using a fast single scan mode with 0.1 nm sampling 
interval. Additional instrumentation included an ultra-
sonic bath (Julabo Labortechnik, Germany) for extrac-
tion and a Shimadzu analytical balance (AGE-220) for 
weighing. Data processing and chemometrics analysis 
were performed with Matlab R2013a with PLS Toolbox 
v2.0. Excel-enabled ANOVA statistical analysis.

Reagents and materials
Ultrapure water (Milli-Q, Millipore) was used through-
out the procedures. All chemicals were of analytical 
grade. Reference standard compounds of montelukast 
sodium (MLK; batch no. MK-0180513) and levocetirizine 
dihydrochloride (LCZ; batch no. LCZ-1304009) were 
obtained from EGY Pharm with certified purity of 99.30% 
and 99.78%, respectively. Montair-LC® tablets (batch no. 
D3184-8) produced by Cipla (India) and labeled to con-
tain 10 mg MLK and 5 mg LCZ per tablet were procured 
from a local pharmacy for analysis.

Standard solutions
Individual stock solutions of 100 μg/mL MLK and LCZ 
were prepared by accurately weighing 10 mg reference 
standard into a 50 mL volumetric flask, dissolving in 
water, and making up to final volume. Stock solutions 
demonstrated stability for one month under refrigeration 
(4 ̊C). Working standard solutions were freshly prepared 
daily by appropriate dilution of stock solutions with 
ultrapure water to yield the desired concentration range.

Spectral characteristics and linearity
Assessment of spectral characteristics is an important 
initial phase to understand the UV absorption profiles 
and spectral overlap between the analytes, as shown in 
(Fig. 2). To assess spectral characteristics, the UV absorp-
tion spectra of MLK and LCZ were recorded individu-
ally over the wavelength range of 200–400 nm. The scans 
were performed for standard solutions of each compo-
nent prepared at concentrations of 10 μg/ml for MLK and 
5 μg/ml for LCZ, as illustrated in (Fig. 3). These concen-
trations were selected within the typical linear dynamic 
ranges and pharmaceutical ratio. To assess the linearity of 
the method, UV spectra of mixtures containing MLK and Fig. 1 Chemical structure of a LCZ, and b MLK
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LCZ were obtained at intervals of 1 nm from 200 to 400 
nm, with concentration ranges of 10–30 μg/ml for MLK 
and LCZ. These ranges were selected based on the typical 
concentrations expected in pharmaceutical samples and 
to cover the linear dynamic range of the instrument.

Experimental design
A systematic experimental framework is imperative for 
acquiring representative, information-rich spectral data. 
A multilevel multifactor calibration set of 25 mixtures 
was constructed based on the design of Brereton et  al. 

[29]. This generated a calibration set of 25 mixtures con-
taining varying proportions of 10–30 μg/ml for MLK and 
LCZ. The validation set was prepared using LHS, which 
ensures representative sampling of the concentration 
space for reliable model validation [30]. The concentra-
tion range was divided into 13 equal probability strata 
from which 13 distinct mixtures were sampled for the 
validation set. Both designs align with GAC and WAC as 
they have many advantages, including simplicity, sensitiv-
ity, selectivity, user-friendliness, cost-effectiveness, mini-
mal solvent usage, time efficiency, and eco-friendliness.

Mixtures were prepared in 25 ml volumetric flasks using 
micropipettes and ultrapure water as solvent. Absorption 
spectra from 200–400 nm were acquired against a water 
blank with 1 cm quartz cuvettes. Spectral regions below 
210 nm and above 400 nm were discarded due to noise 
and lack of signals, respectively, yielding the working 
spectral data matrix of 210–400 nm at 1 nm resolution 
(191 data points). This spectral data was utilized for the 
development and validation of the chemometrics models.

Models building and optimization
Four chemometric regression approaches were imple-
mented for the model building including classical least 
squares (CLS), principal component regression (PCR), 
partial least squares (PLS), and PLS coupled with genetic 
algorithm wavelength selection (GA-PLS). Rigorous 
calibration model optimization was performed using 
the 25-mixture design calibration set to avoid overfit-
ting and derive maximally robust models. For CLS, the 

Fig. 2 Flowchart visualizes the key steps in the methodology
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Fig. 3 The zero-order absorption spectrum of LCZ, and MLK
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regression was calculated independently at each meas-
ured wavelength without compression into latent vari-
ables (LVs). However, a moving window wavelength 
selection approach was utilized to optimize model per-
formance, where window widths from 5 to 30 nm were 
evaluated through cross-validation to determine the opti-
mal spectral smoothing level, balancing noise reduction 
with retention of quantitative information. For PCR and 
PLS, the optimal number of LVs was systematically var-
ied from 1 to 10 and identified through Venetian blinds 
cross-validation, monitoring root mean squared error 
of cross-validation (RMSECV). The selected LVs num-
ber balanced model fit and complexity. for GA-PLS, 
GA variables were optimized to extract the most infor-
mation-rich and noise-minimized portion of the spec-
tra for importation into a refined PLS model, balancing 
predictive ability, reliability, and generalization capabil-
ity based on the calibration set After optimization, the 
models were applied to determine MLK and LCZ in the 
external validation set mixtures to evaluate predictive 
performance.

Figures of merit
Multiple essential metrics were computed to thoroughly 
evaluate the predictive capacity, precision, sensitivity, 
accuracy, and robustness of the fully optimized chemo-
metrics models [31]. The root mean square error of cali-
bration (RMSEC) and RMSECV were determined using 
the calibration set spectra as measures of model fitting. 
Additionally, the standard error of calibration (SEC) and 
explained variance  (R2) quantified goodness of fit.

Predictive ability was evaluated through the cross-vali-
dated predictive ability  (Q2) metric computed by system-
atic cross-validation on the calibration set. The predictive 
accuracy on new samples was quantified through the 
relative root mean square error of prediction (RRMSEP) 
and root mean square error of prediction (RMSEP) met-
rics on the external validation set. Furthermore, the bias-
corrected mean square error of prediction (BCMSEP) 
gauged the precision and variance of predictions.

The equations used to determine  R2,  Q2, RMSECV, 
RMSEP, and RMSEC are as follows [31]:

Residual Sumof Squares(RSS) = �(yobserved − ypredicted)
2

Total Sumof Squares(SSX) = �(yobserved − ymean)
2

R2
= 1− (RSS/SSX)

Predictive Residual Sumof Squares(PRESS) = �(yobserved − ypredictedCV )
2

The remaining figures of merit were calculated using 
the following equations:

The value ŷi represents the outcome acquired dur-
ing the process of calibration (in the case of RMSEC), 
validation (in the case of RMSEP), and cross-validation 
(in the case of RMSECV). The variable yi denotes the 
experimental result for the sample i , while n represents 
the total number of samples.

To gauge accuracy, triplicate measurements were 
conducted at three different concentration levels within 
the linear range for each analyte (15, 20, and 25 µg/mL), 
followed by the calculation of percent recoveries (%R). 
Repeatability (intra-day) and intermediate (inter-day) 
precision were assessed by analyzing triplicate samples 
on the same day and on three separate days, respec-
tively, at concentrations of 15, 20, and 25 µg/mL for 
MLK and LCZ, with percent relative standard deviation 
(%RSD) used to quantify precision. Robustness was 
investigated by making slight modifications to experi-
mental variables, such as wavelength interval (0.9 nm 
instead of 1 nm), spectral bandwidth (0.8 nm instead 
of 1 nm slit width), and scan speed (medium instead of 
fast scan). The capability to withstand these alterations 
demonstrated method robustness. The limits of detec-
tion (LOD) and quantification (LOQ) were calculated 
based on the standard error of the regression curve cre-
ated between experimentally measured concentrations 
(y-axis) and concentrations predicted by the models 

Q2
= 1− (PRESS/SSX)

RMSE =

√∑n
i=1(yi − ŷi)2

n

Bias =

∑n
i=1(yi − ŷi)

n

SEC =

√∑n
i=1(yi − ŷi − bias)2

n− 1

RRMSEP% =

1
n

√∑n
i=1(yi − ŷi)2

yi
× 100

BCMSEP =

∑n
i=1(yi − ŷi)2

n
− (bias)2
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(x-axis), using the IUPAC-recommended equations 
[11]:

where σ is the standard error of the prediction-vs-actual 
regression quantifying variability in predictions, and S is 
the corresponding slope indicating sensitivity to concen-
tration changes. This extensive analytical validation pro-
vided insights into the predictive capabilities, accuracy, 
precision, sensitivity, and robustness of the developed 
models on pharmaceutical mixture analysis.

Analysis of pharmaceutical dosage forms
Five Montair-LC® tablets (label claim: 10 mg MLK and 
5 LCZ per tablet) were crushed together to a fine pow-
der. A precisely measured amount of powder, equal to the 
weight of one tablet, was placed into a volumetric flask 
with a capacity of 100 mL. Approximately 50 mL of water 
was added and sonicated for 15 min to extract the drugs 
into the solution. The volume was made up of water, 
mixed well, passed through a membrane filter with a pore 
size of 0.45 μm and appropriately diluted with water to 
obtain concentrations of (100 μg  mL−1 MLK, and 50 μg 
 mL−1 LCZ). Suitable aliquots were transferred from the 
clear filtrate into 10 mL volumetric flasks and diluted 
with water. The absorption spectra of these diluted sam-
ple solutions were recorded in the range of 200–400 nm 
against a water blank. The spectra were analyzed employ-
ing the developed chemometrics models to determine 
the concentrations of MLK and LCZ in the pharmaceu-
tical preparation. The accuracy was evaluated by spiked 
standard addition at four concentration levels in tripli-
cate. R % and %RSD were calculated.

Results and discussion
Spectral data acquisition and chemometrics models
The development of an accurate and reliable analytical 
method requires systematic optimization of experimen-
tal parameters to extract the maximum relevant chemi-
cal information. For spectral acquisition, key parameters 
optimized included wavelength range, sampling interval, 
scan speed, and slit width. A wavelength range of 200–
400 nm was selected by scanning standard solutions of 
MLK and LCZ to identify regions exhibiting significant 
absorbance peaks. This encapsulated the full fingerprints 
of both analytes. The sampling interval was set to 1 nm 
to provide sufficient resolution to discern subtle spec-
tral features important for quantification. Additionally, 
a fast scan speed was chosen to enable higher through-
put analysis while using a slit width of 1 nm balanced 

LOD = 3.3σ/S

LOQ = 10 σ/S

resolution with sufficient light throughput. These acqui-
sition parameters delivered a spectral data matrix with 
optimal information content and signal-to-noise ratios to 
support chemometrics modeling. Preprocessing identi-
fied the working range of 210–400 nm (191 data points) 
as optimal by removing uninformative noise at higher 
and lower wavelengths. The resulting high-quality spec-
tral data matrix was then subjected to iterative chemo-
metrics optimization.

A range of chemometrics techniques including CLS, 
PCR, PLS, and GA-PLS were implemented. These 
approaches were chosen based on their demonstrated 
ability to handle multi-component analysis and extract 
latent predictive information even with significant col-
linearity and interactions between constituents [13, 
15]. This enabled accurate quantification despite the 
significant spectral overlaps seen in Fig.  3. Overall, this 
chemometrics-powered workflow achieved sensitive 
pharmaceutical determination while aligning with green 
chemistry aims through efficient use of the information-
rich and cost-effective UV–vis fingerprint region.

Calibration set design
A key facet of developing an accurate multivariate cali-
bration model is the strategic design of the calibration 
sample set. A poorly conceptualized calibration set risks 
insufficient representation of the analytical system’s vari-
ation, leading to a lack of model robustness. To avoid 
this, we utilized a multilevel multifactor experimental 
design proposed by Brereton et  al. [29] to systemati-
cally construct an optimized 25-sample calibration set 
with varying proportions of MLK and LCZ at five differ-
ent concentration levels (−  2, −  1, 0, + 1, + 2), as shown 
in (Table  1). The concentration ranges for the calibra-
tion set were selected based on the typical concentra-
tions expected in pharmaceutical samples and to cover 
the linear dynamic range of the UV instrument. For the 
calibration set, concentrations of 10–30 μg/ml for both 
MLK and LCZ were used. This range spans the linear 
range of the method and the typical pharmaceutical 
concentrations of the two analytes. Compared to using 
excessive calibration samples, this structured approach 
provides several important advantages. First, it allows the 
intentional creation of non-correlated concentration pro-
files between the analytes. Keeping the calibration con-
centration vectors orthogonal prevents covariation and 
enables the model to better discern the unique spectral 
contribution of each analyte. This enhances selectivity 
and prevents overfitting artifacts that can reduce predic-
tive accuracy for complex samples. Second, the use of 
multiple concentration levels for both analytes ensures 
variation across all dimensions of the calibration space. 
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This enhanced representation helps the model effec-
tively identify and weight the spectral regions correlating 
with analyte concentration. Capturing this multivariate 

concentration-spectral relationship is key for quantifica-
tion. Finally, the hierarchical nature of the experimental 
design minimizes the number of samples required to 
systematically span the calibration space. By strategically 
selecting samples, this approach reduces resource usage, 
chemical waste, instrumental analysis time, and over-
all experimental cost compared to excessive calibration 
samples. The improved efficiency makes this an aligned 
green analytical chemistry practice. Overall, the multi-
level multifactor calibration design improved predictive 
performance and greenness through efficient, structured 
sampling and modeling of the concentration space for 
all analytes. This aligns well with the core principles of 
developing sustainable analytical methods.

Validation set design
Proper design of the validation set was critical for unbi-
ased assessment of the chemometrics models’ predic-
tive accuracy across diverse combinations of analytes. 
Simple random sampling risks incomplete coverage that 
produces biased accuracy estimates. To overcome this 
critical limitation, we systematically designed the vali-
dation set using LHS, a statistically efficient space-fill-
ing experimental design technique. LHS divides the full 
concentration range of each modeled component into N 
equal probability strata, with N chosen to balance model 
evaluation needs with green analytical principles of effi-
ciency. We determined an optimal validation set size of 
13 LHS-selected mixtures based on the number of mod-
eled factors and mixtures in the calibration set, as shown 
in (Table 1). Using a prime number avoids potential peri-
odic resonances between stratification levels. The 13 
strata provide wide coverage while the prime number 
selection enhances space-filling properties. LHS selects 
exactly one sample from each of the 13 strata, ensuring 
even and comprehensive coverage across all dimensions 
of the modeled pharmaceutical concentration space. This 
is visualized in the scatter plots of (Fig. 4), showing the 13 
LHS validation samples achieving excellent uniform scat-
tering across all analyte ranges without gaps. Compared 
to simplistic random sampling, LHS provides superior 
concentration space coverage and representativeness 
using significantly fewer samples. By improving concen-
tration space sampling efficiency, LHS allows a smaller 
but more informative and representative validation set. 
This enhances method greenness by reducing material 
usage, waste, and cost. Additionally, the reliable predic-
tive performance estimates on this strategically designed 
LHS test set demonstrate the robustness and generaliza-
tion capability of the model across varying and diverse 
pharmaceutical component compositions. This avoids 
biases or exaggerated accuracy that could occur with 
insufficient validation set sampling via random selection. 

Table 1 The five-level five-factor experimental design of 25 
calibrations mixtures and the Latin Hypercube sampling design 
13 validation set mixtures used in the chemometric methods

Mix no. Calibration set (µg/mL)

LCZ MLK

1 20 20

2 20 10

3 10 10

4 10 30

5 30 15

6 15 30

7 30 20

8 20 15

9 15 15

10 15 25

11 25 30

12 30 25

13 25 20

14 20 30

15 30 30

16 30 10

17 10 25

18 25 10

19 10 20

20 20 25

21 25 25

22 25 15

23 15 10

24 10 15

25 15 20

Mix no. Validation set (µg/mL)

LCZ MLK

1 19 16

2 22 27

3 13 12

4 22 13

5 18 26

6 11 22

7 16 29

8 17 21

9 27 11

10 27 24

11 13 27

12 29 19

13 23 21
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Overall, LHS overcomes critical limitations of simplis-
tic approaches, enabling trustworthy, sample-efficient 
assessment of predictive performance across the mod-
eled pharmaceutical concentration space. This aligns well 
with core principles of developing sustainable analytical 
methods.

CLS model
The CLS method employs multivariate linear regression 
based on the Beer-Lambert law, requiring accurate ana-
lyte spectral profiles and concentrations for all calibration 
samples [15]. A key assumption in CLS is that a linear 
relationship exists between absorbance and component 
concentration across the modeled spectral region. Ini-
tial CLS models built on the 25-mixture calibration set 
yielded inadequate predictions. However, incorporating 
an intercept term into the CLS algorithm significantly 
improved results, yielding excellent recovery percentages 
of 99.28% and 101.44% for MLK and LCZ, respectively. 
This demonstrates that an intercept adjustment enabled 
the CLS method to account for subtle nonlinear behav-
iors and background effects. While straightforward in 
principle, CLS has intrinsic limitations when complex 
nonlinear interactions or unknown constituents are pre-
sent, constraining predictive accuracy. Its requirement 
for precise reference spectra for all sample components is 
often impractical for complex pharmaceutical mixtures. 
However, CLS provided an accessible starting point for 
analysis in this work before more advanced chemometric 
methods demonstrated superior performance.

PCR model
PCR model combines multivariate regression with prin-
cipal component analysis (PCA) for predictive modeling 

[15]. This two-step approach first applies PCA to the 
spectral data matrix to extract major trends while reduc-
ing noise, artifacts, and collinearity. PCA generates new 
orthogonal explanatory variables called principal com-
ponents (PCs) that successively capture the major varia-
tion within the spectra. Cross-validation was employed 
to determine the optimal number of PCs to retain for 
the highest predictive accuracy without overfitting. The 
25-mixture calibration set spectra were mean-centered, 
and PCR models were constructed by systematically 
excluding one sample during each cross-validation round. 
Root mean square error of cross-validation (RMSECV) 
was monitored with increasing numbers of PCs included 
in the PCR model. Typically, prediction error decreases 
initially as informative PCs are added then worsens as 
noise dominates higher-order PCs. The optimal com-
plexity balancing model fit and generalization was two 
PCs for both pharmaceutical components. This extracted 
the key spectral variations related to API concentrations 
while discarding interfereing contributions. The two-PC 
PCR model yielded RMSECV values of 0.121 and 0.297 
for MLK and LCZ respectively, indicating good predic-
tive performance on the calibration set itself, as illus-
trated in (Fig. 5).

PLS model
PLS is a prominent chemometrics technique closely 
related to PCA and regression. However, PLS has a dis-
tinct objective—rather than explaining spectral variation 
like PCA, PLS aims to maximize the covariance between 
spectral data (predictor variables) and component con-
centrations (response variables). This retains LVs directly 
related to concentration prediction while discarding 
interfering spectral contributions uncorrelated with ana-
lyte levels. PLS builds these LVs sequentially, concen-
trating information co-varying with concentration into 
earlier factors. By retaining information-rich regions and 
discarding uninformative spectral bands, PLS typically 
achieves improved accuracy compared to PCR [15]. The 
optimal PLS model complexity was determined through 
leave-one-out cross-validation on the 25-mixture calibra-
tion set. The number of latent variables was systemati-
cally increased, monitoring RMSECV to balance model 
fit against overfitting. Ideally, 2 LVs proved optimal for 
both MLK and LCZ, yielding RMSECV values of 0.321 
and 0.467 respectively, as depicted in (Fig. 5).

GA‑PLS model
While PLS demonstrated excellent analytical capabili-
ties, model optimization was pursued using GA to fur-
ther enhance predictive performance [15]. GA works by 
iteratively selecting subsets of variables that maximize 
a desired output—in this case cross-validated model 

Fig. 4. 2D scatter plot of the validation set designed by latin 
hypercube sampling design as optimal-space filling design
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accuracy on the calibration set. Several key parameters 
were systematically adjusted over multiple GA runs to 
enable effective navigation of the complex high-dimen-
sional search space. Population size, mutation rate, 
convergence criteria and wavelength subset sizes were 
rigorously tuned based on RMSECV patterns. As shown 
in (Table  2), a population of 40 chromosomes with 65 
generations using 80% convergence threshold achieved 
high-resolution wavelength selection. Through this opti-
mization, the absorption matrix was refined by discard-
ing uninformative spectral regions containing minimal 
analyte signals. This reduced the matrix size by 63% and 
51% for MLK and LCZ respectively, retaining only the 
most relevant variables. This GA-filtered spectrum was 
then utilized to reconstruct enhanced GA-PLS models 
using the same PLS routine. Cross-validation assessed 
the ideal number of LVs. for the reconstructed models, 
determining 2 LVs yielded optimal RMSECV of 0.221 and 
0.307 for MLK and LCZ respectively, as shown in (Fig. 5). 
The Chemometric methods recommended in this study 
were applied to the calibration data using the optimal 
parameters. The concentrations of each component in 
the calibration set, consisting of 25 mixtures, were com-
puted and presented in (Table  3). The predicted and 

known concentrations of each component were found 
to be linearly related. The GA-PLS model demonstrated 
superior performance by tailoring the spectral data 
matrix to retain only significant concentration-predictive 
signals. Sensitivity also improved since minimal wave-
lengths enabled reduced noise interference.

Comprehensive validation of chemometric models
We implemented a systematic validation protocol span-
ning key analytical performance dimensions to rigorously 
assess the optimized models’ suitability for pharmaceu-
tical quantification. We evaluated calibration set model 
fitting via the determination coefficient  R2 and predictive 
ability using  Q2. As shown in (Additional file 1: Table S1), 
 R2 and  Q2 exceeded 0.9 across all models, demonstrat-
ing excellent explanatory and predictive power on cali-
bration samples. Additionally, the small gap between  R2 
and  Q2 indicates good generalizability and minimal over-
fitting for the developed models. Additionally, The SEC 
values below 0.3 observed across models indicate excel-
lent fitting and minimal deviations between predicted 
and reference concentrations on the calibration sam-
ples. Regarding external validation set performance, as 
shown in (Table 3 and Additional file 1: Fig. S1), excellent 

Fig. 5 RMSECV plot of the calibration set as a function of the optimum LVs for the A PCR, B PLS, and C GA-PLS models
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recoveries from 98 to 102% were obtained across all com-
ponents and models, evidencing the excellent resolution 
capacity and minimal bias as well as the low RMSEP val-
ues below 0.3 affirm the high accuracy of concentration 
predictions on the independent LHS samples. Addition-
ally, the RRMSEP values below 1.3% relative to the mean 
analyte concentrations attest to excellent predictive pre-
cision. The minute positive BCMSEP values approach-
ing zero further validate the high predictive accuracy 
and negligible systematic quantification errors. Sensi-
tivity was verified through low LOD and LOQ, meeting 
pharmaceutical analysis criteria. Method accuracy was 
systematically confirmed across the linear range through 
recovery testing at three concentrations in triplicate, 
with percentage recoveries from 98–102%. The repeat-
ability and intermediate precision analyses demonstrated 
%RSD values below 2%, highlighting stable quantification 
despite short-term and long-term measurement time-
scale variations. Finally, unchanged performance was 
attained under intentionally altered conditions, estab-
lishing operational robustness, as shown in (Additional 
file 1: Table S1). Among the four developed chemomet-
rics models, the GA-PLS approach consistently achieved 
the best results across all validation parameters, quanti-
tatively confirming its optimal predictive capabilities for 
pharmaceutical analysis. Specifically, the GA-PLS model 
attained the highest  R2 and  Q2  (R2 = 0.9932 and 0.9901; 
 Q2 = 0.9687 and 0.9542 for MLK and LCZ respectively), 
signifying its unrivaled data fitting and predictive accu-
racy. Additionally, it demonstrated the lowest RMSEP 
of just 0.1872 and 0.1779 for the two drugs, along with 
the lowest relative RRMSEP of 0.7516% and 0.6585%, 
highlighting top-tier generalization ability to new sam-
ples. The GA-PLS model also showed the best repeat-
ability and intermediate precision with %RSDs not 

exceeding 0.9%, compared to under 2% for the other 
models. This underscores its superior analytical preci-
sion. Furthermore, it required the lowest detection limits 
(LOD = 0.0813 and 0.2273 μg/mL) to reliably quantify the 
pharmaceuticals, exhibiting the best sensitivity. Finally, 
it attained slightly higher recovery percentages (99.72–
100.86%) and lower standard deviations (< 0.6%) during 
accuracy assessment, surpassing all models in analytical 
accuracy.

Statistical analysis
There is no notable distinction in accuracy between the 
different models, as indicated by the one-way ANOVA 
analysis of the validation data. The computed f values are 
lower than the critical f value, and the p values are greater 
than 0.05.; this suggests that the proposed models did not 
differ significantly from each other in terms of accuracy, 
as shown in (Additional file 1: Table S2). Additionally, the 
proposed chemometric methods were comparable to the 
reported method [21]. for determining MLK and LCZ, as 
shown in (Additional file 1: Table S2).

Assay of pharmaceuticals
The suggested approach was suitable for examining 
Montair-LC® tablets without any disruption from the 
additives. To validate the proposed method, a standard 
addition technique was employed, and the results are 
outlined in (Table 4).

Comparative study
Our systematic investigation elucidated the capabili-
ties and limitations of the CLS, PCR, PLS and GA-PLS 
approaches for green pharmaceutical analysis. While 
all models demonstrated good predictive performance, 
notable divergence was observed in critical aspects like 

Table 2 Optimized parameters of GA selected as variable selection procedure to enhance the models’ predictability

Parameters Optimum values

MLK LCZ

Population size 40 36

Maximum generations 65 52

Mutation rate 0.005 0.005

% wavelength used at the initiation 15 15

The number of variables in a window (window width) 2 2

Percent of the population (% of convergence) 80 80

Cross-type Double Double

Maximum number of latent variables 3 3

Cross-validation Random Random

Number of subsets to divide data into for cross-validation 5 5

Number of iterations for cross-validation at each generation 2 2
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accuracy, sensitivity, precision, and applicability. The 
CLS technique showed satisfactory predictions but was 
constrained by its need for highly pure reference spectra 
and inability to resolve unknown interferences—imped-
ing widespread quality control adoption. In contrast, 
PCR and PLS proved more flexible by deriving latent 
variables through multivariate decomposition of spec-
tral data—bypassing exhaustive calibration component 
knowledge requirements. However, PCR retained exces-
sive uninformative spectral variables compared to PLS 
which selectively captures concentration-correlated 
information, enhancing predictive robustness. Sig-
nificantly, integrating GA variable selection with PLS 
unlocked decisive performance gains over raw data mod-
els. By intelligently filtering out spectral regions with 
negligible analyte signals, GA-PLS improved resolution 
and information extraction using fewer, optimized vari-
ables—boosting accuracy, precision, and sensitivity and 
enabling reliable applicability despite unknown matrix 
components. Quantitatively, this was evidenced in the 
GA-PLS model attaining the best RMSEC, SD, RMSCP, 
R% values, and other validation parameters, as shown in 
(Additional file  1: Table  S1), marginally but consistently 
outperforming its PCA and PLS counterparts. In totality, 
while all models showed promise, the GA-PLS method-
ology systematically emerged as the definitive optimized 
approach, leveraging the strengths of multivariate data 
analysis and variable selection to deliver a practical, 
eco-friendly solution for accurate, green pharmaceutical 
quality control.

Greenness, blueness, and whiteness tools
A multifaceted approach was undertaken to evaluate 
sustainability across critical dimensions like greenness, 
waste minimization, safety, analytical performance, and 

cost-effectiveness. Since no single tool provides com-
prehensive coverage, we applied a combined toolkit 
methodology for a more holistic assessment.

NEMI tool
The NEMI analysis offered an initial screening of 
greenness deficiencies through a visual format sepa-
rated into four quadrants [9]. These four quadrants are 
1-PBT (persistent, bioaccumulative, and toxic), 2-Haz-
ardous, 3-Corrosive, and 4-Waste. The green quadrant 
indicates that 1- the reagents employed are not classi-
fied as PBT by the Environment Protection Agency’s 
Toxic Release Inventory (EPA-TRI), 2- the chemicals 
utilized are non-hazardous and therefore not regis-
tered on the TRI list, 3- the medium pH falls between 
2 and 12 and 4- less than 50g of waste is produced 
(Additional file  1: Fig. S1). NEMI pictograms were 
created for the proposed method (Table 5). First sight 
at the pictograms showed that the proposed method 
was the greenest, meeting all NEMI criteria with four 
green quadrants.

Complex GAPI tool
While NEMI enables initial greenness screening, the 
ComplexGAPI tool allows more comprehensive semi-
quantitative evaluation [9]. It improves on the original 
GAPI metric by adding a hexagonal area representing 
the stages and procedures before the analytical meth-
odology (Additional file  1: Fig. S2). This innovative tool 
encompasses all aspects of an analytical procedure, from 
collecting and transporting samples to their preserva-
tion, storage, preparation, and ultimate analysis [32]. 
ComplexGAPI also provides user-friendly software to 
construct visual pictograms. For this study, the proposed 
method demonstrated substantial advantages with a 
lower E-factor of 1 and predominance of favorable green 

Table 3 Determination of MLK and LCZ in the calibration and validation set of the suggested methods

a Root Mean Square Error of calibration
b Root Mean Square Error of predication

CLS PCR PLS GA-PLS

MLK LCZ MLK LCZ MLK LCZ MLK LCZ

Calibration 
set

Mean 99.27 99.76 100.07 99.43 99.84 99.63 99.76 100.04

SD 1.6282 1.506 1.606 1.595 1.3436 1.5149 1.0846 1.4768

%RSD 1.6402 1.5096 1.6049 1.6041 1.3458 1.5205 1.0872 1.4762

RMSEC(a) 0.1249 0.2592 0.2191 0.2023 0.2705 0.2904 0.0943 0.1926

Validation set Mean 99.60 99.61 100.15 99.56 99.70 99.53 99.72 99.79

SD 1.1662 0.9201 1.2701 0.6832 1.3381 0.9161 1.0342 0.5252

%RSD 1.1709 0.9237 1.2682 0.6862 1.3421 0.9204 1.0371 0.5263

RMSEP(b) 0.2904 0.2583 0.2843 0.2342 0.2742 0.3442 0.1872 0.1779
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icons signifying minimal waste generation and positive 
sustainability impact, as shown in (Table  2). However, 
ComplexGAPI focuses chiefly on environmental con-
siderations. To enable a fuller assessment encompass-
ing multi-dimensional sustainability metrics like waste 
minimization, energy efficiency, and renewable material 
usage, it proves advantageous to integrate ComplexGAPI 
with complementary quantitative tools.

AGREE tool
The AGREE metric provides a valuable quantitative 
approach for evaluating greenness by encompassing all 
12 principles of GAC [9]. This enables thorough assess-
ment grounded in widely accepted GAC criteria. A key 
advantage of AGREE is flexibility through customizable 
weighting of these diverse parameters. The user-friendly 
software converts the 12 inputs into a single score from 
0 to 1, visualized on a colored pictogram for rapid inter-
pretation. Dark green indicates excellent greenness while 
dark red signifies major deficiencies. For this study, the 
proposed method achieved a high AGREE score of 0.90 
(Table  2), affirming remarkable efficacy in advancing 
sustainability aims. However, AGREE focuses solely on 
environmental factors. To enable a holistic sustainability 
evaluation, it proves beneficial to integrate AGREE with 
tools assessing other critical aspects like safety, analytical 
performance, practicality, and cost-effectiveness.

Carbon footprint analysis
Unlike other greenness assessments, carbon footprint 
analysis enables quantitative comparison of analytical 
methods’ environmental impacts in terms of greenhouse 
gas emissions, reported as kilograms of  CO2 equivalent 
[9]. By capturing critical aspects like electricity usage, rea-
gent transportation, and waste generation in a composite 
measure, carbon footprint effectively complements tools 
like NEMI, ComplexGAPI, and AGREE that lack quan-
titative emissions estimation. We calculated the carbon 
footprint using the standardized equation below [9]:

Carbon footprint
(
kgCO2eq

)
=

∑
Instrument Power(kW ).Analysis time(h).Emission factor(kgCO2/kWh)

The proposed method demonstrated a markedly lower 
carbon footprint of just 0.021 kg  CO2 eq per sample, as 
shown in Table 2. The lower carbon footprint of our tech-
nique is attributed to the reduced electricity consump-
tion enabled by shorter analysis times and the absence of 
a derivatization step. Moreover, replacing hazardous sol-
vents like chloroform and methylene chloride with water 
markedly decreased transport-related emissions, con-
firming its favorable environmental profile.

BAGI tool
Unlike predominantly greenness-focused tools, the 
recently introduced BAGI metric delivers a quantitative 
evaluation of an analytical method’s “blueness”—defined 
as its real-world fitness for purpose based on critical 
practical criteria [33]. BAGI enables a comprehensive 
assessment of an analytical method’s blueness or appli-
cability by considering ten key parameters: analysis type, 
number of analytes, instrumentation, sample throughput, 
sample preparation needs, samples analyzed per hour, 
reagents/materials required, preconcentration needs, 
degree of automation, and sample amount needed. Each 
of these ten factors is scored on a scale of 1 (worst) to 10 
(best). The composite BAGI score computes the geomet-
ric mean of the ten individual criteria scores. A higher 
BAGI score indicates a more applicable, functional, and 
fit-for-purpose analytical method. Our method obtained 
a high BAGI score of 90, indicating excellent blueness. 
The BAGI assessment validates that our technique offers 
significant advantages in terms of time and cost sav-
ings, hazard minimization, and overall functionality, 
as depicted in (Table  2). However, while BAGI evalu-
ates critical real-world applicability, it does not provide 
a complete, holistic quantification of sustainability. To 
achieve a more comprehensive assessment encompassing 
greenness, analytical merit, and practicality, we addition-
ally applied the RGB12 algorithm.

Table 4 Determination of MLK and LCZ by the suggested chemometric methods and application of standard addition technique

a Average of three determinations

Preparation %Recovery ± %RSD (a)

CLS PCR PLS GA-PLS

MLK Application 99.59 ± 0.907 99.60 ± 0.906 100.07 ± 1.292 99.53 ± 0.697

Standard addition 98.21 ± 0.439 98.19 ± 0.439 100.24 ± 0.534 98.72 ± 0.854

LCZ Application 99.62 ± 0.864 99.62 ± 0.864 100.1 ± 1.001 99.77 ± 0.754

Standard addition 99.60 ± 0.662 99.59 ± 0.662 100.30 ± 0.665 99.26 ± 0.838
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RGB12 tool
The RGB12 tool was introduced in June 2021 by Paweł-
Nowak and his team [34]. It is a quantitative assessment 
tool that is easy to use for evaluating whiteness. This tool 
determines the degree of sustainability concerning white-
ness assessment and assesses methods based on the 12 
WAC considerations. [9]. The RGB12 algorithm com-
prises twelve distinct algorithms organized into three 
groups: red, green, and blue, where each group consists 
of four algorithms. The green subgroup (G1-G4) deals 
with important GAC parameters like toxicity, amount of 
waste and reagent, energy conservation, and influences 
on humans, animals, and genetic alterations. The red 
subgroup (R1-R4) focuses on validation parameters such 
as application scope, accuracy, LOD, precision, and LOQ. 
The blue subgroup (B1-B4) concerns practical and eco-
nomic necessities, cost-effectiveness, and time efficiency. 
The RGB12 algorithm adds the method’s scores in each 
of the three-color areas to determine the final "whiteness" 

value, which shows how the method adheres to WAC 
concepts. The suggested method exhibits a remarkable 
whiteness score of 90.8, as displayed in (Table  2), this 
demonstrates that the method has numerous benefits 
with regard to environmental friendliness, sustainability, 
economic viability, practicality, and analytical efficiency. 
Using RGB12 with other metrics provided a comprehen-
sive, robust sustainability evaluation and avoided single 
technique limitations. This systems-thinking attitude 
using various complementary tools represents a best 
practice for detailed, unbiased analytical method sustain-
ability assessment.

Recommendations for future work and limitations
While the developed methods demonstrate strong per-
formance and sustainability advantages, further enhance-
ment is possible. Additional analytes and matrices 
could be explored to expand applicability. To address 

Table 5 Greenness blueness and whiteness assessment of the proposed approach according to NEMI, ComplexGAPI, AGREE, carbon 
footprint, BAGI, and RGB12 tools
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the industrial application capacity, based on Richard G. 
Brereton’s work on multilevel multifactor designs, a key 
recommendation is to investigate expanding the total 
number of samples that can be robustly measured simul-
taneously in a single mixture to up to 24 analytes using 
these chemometric techniques. This would significantly 
enhance throughput and efficiency compared to conven-
tional methods analyzing one sample at a time.

Regarding limitations, The UV–Vis technique pro-
vides limited structural information compared to tech-
niques like NMR and mass spectrometry, restricting its 
applicability mainly to quantitative analysis rather than 
the structural elucidation of pharmaceuticals. Spec-
tral overlaps between analytes can still occur, requiring 
mathematical resolution via chemometric tools. In some 
cases, partial separation using selective solvents or pH 
adjustment may be beneficial before spectral acquisition. 
Sample matrix interferences pose challenges for accurate 
quantification in complex formulations, necessitating 
appropriate sample preparation or pre-treatment strate-
gies tailored to the matrix.

Despite the limitations outlined, the simplicity, afford-
ability, speed, and eco-friendliness position our che-
mometric strategy as a promising solution, especially 
for laboratories with moderate instrumental facilities. 
Addressing the challenges highlighted here through 
future research will expand the scope and refine the util-
ity of sustainable chemometric models in pharmaceutical 
analysis.

Conclusion
This work has successfully developed and validated the 
first chemometric models for the simultaneous quan-
tification of two structurally dissimilar anti-COVID 
drugs, MLK and LCZ which align with sustainable 
development objectives. The proposed CLS, PCR, PLS 
and GA-PLS models demonstrated excellent predictive 
capabilities, accuracy, precision, sensitivity, and robust-
ness for pharmaceutical analysis. The optimized GA-
PLS model demonstrated superior performance with 
excellent accuracy, precision, and minimal environ-
mental impact. A key highlight was the implementa-
tion of a cutting-edge statistical design technique called 
LHS to construct an optimal validation set. LHS pro-
vided a rigorous, unbiased assessment of the models’ 
ability to generalize across the full concentration range, 
overcoming limitations in chemometrics where studies 
predominantly use random data splitting. By enhanc-
ing predictive reliability with fewer validation samples, 
this aligns with green analytical principles of resource 
efficiency. Furthermore, this research spearheaded 
comprehensive quantitative greenness, blueness, and 
whiteness evaluations using state-of-the-art tools like 

NEMI, ComplexGAPI, AGREE, BAGI, and RGB12. 
Favorable results on critical parameters related to eco-
friendliness, analytical performance, real-world appli-
cability, affordability, and sustainability were achieved. 
Overall, the developed UV–vis chemometrics approach 
has shown immense promise as a rapid, inexpensive 
and sustainable quality control workflow amenable to 
widespread pharmaceutical implementation, even in 
laboratories with basic facilities. It can serve as a viable 
green alternative to costly chromatographic techniques. 
Additionally, this method has demonstrated significant 
advantages regarding time and cost savings, hazard 
minimization, analytical efficiency and practical func-
tionality. Hence, it holds substantial utility for the regu-
lated routine analysis of MLK and LCZ across quality 
control and research settings. By embracing greenness, 
blueness and whiteness perspectives, this work puts 
forward an eco-friendly, fit-for-purpose and value-cen-
tric direction for analytical progression that meaning-
fully furthers sustainable development aims.
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