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Abstract 

This work focuses on physicochemical features of the choline chloride/propylene glycol deep eutectic solvent 
(DES) + water mixtures by determining their density values in mono- and mixed- states over various temperatures 
in the range of 293.15–318.15 K. The density data obtained from measurements were utilized for the computa-
tion of various quantities such as excess molar volumes, molar volume, apparent molar volume, limiting apparent 
molar expansibility, and isobaric thermal expansion coefficient. Furthermore, the experimental densities were fitted 
to some mathematical equations such as Jouyban-Acree, Jouyban-Acreevan’t Hoff, modified Jouyban-Acree-van’t 
Hoff, Redlich–Kister and Emmerling. Studies of this nature can provide useful insights into solute–solvent interactions 
in aqueous solutions of DES, especially about to their novel application in drug solubilization.

Keywords Density, Deep eutectic solvent, Solute–solvent interactions, Excess molar volumes, Physicochemical 
properties

Introduction
Deep eutectic solvents (DESs) as green solvents are an 
alternatives class for ionic liquids and are synthesized 
using a mixture of two or more organic substances. The 
combination of components in DESs results in a homo-
geneous mixture with a melting point that is lower than 
that of each component [1]. DESs are structured based 
on hydrogen bonding, where a hydrogen bond accep-
tor and hydrogen bond donor components interact 
with each other [2]. The main benefits of DESs are their 

biodegradability, cost-effectively, non-flammability and 
no further purification is required for their preparations 
[3, 4]. Moreover, DESs have a significant effect on the 
solute solubilization and enhance its aqueous solubility 
[5]. DESs are mostly based on choline chloride (ChCl), 
carboxylic acids, and other hydrogen bond donors e.g. 
succinic acid, urea, glycerol, and citric acid [6]. Before a 
solvent selection for any purpose, it needs to obtain some 
essential information on the targeted solvent including its 
volumetric features. Knowing these properties for DESs 
and their mixtures with water provides some helpful 
information on the solute–solvent interactions. Excess 
molar volume as a volumetric property demonstrates the 
non-ideality of a system and explains the intermolecular 
interactions [7–9].

Conducting such studies can yield useful insights 
regarding solute–solvent interactions in DESs’ aqueous 
solutions, which have recently been employed for drug 
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solubilization purposes. To date, there was some data 
on the thermodynamic behavior of an aqueous mixture 
of DESs including ChCl/ethylene glycol [10], ChCl /urea 
[11], ChCl/malonic acid [12], ChCl/phenol [13], ChCl/
glycerol [14], ChCl/glucose [15], ChCl/oxalic acid [16], 
ChCl/triethylene glycol [17], halide salts/ethylene glycol 
[18], and amino acids/ lactic acid [19]. However, there 
is no data for the physicochemical properties of ChCl/
propylene glycol (PG) at various temperatures in the lit-
erature. The goal of this work is to expand the database 
for physicochemical and thermodynamic properties of 
DESs + water mixtures at different temperatures for use 
in the solubilization procedures. It should be noted that 
the exact choice of solvent system will depend on various 
factors such as drug solubility, compatibility, and stability. 
The ChCl/PG + water system may not be suitable for all 
drugs and formulations, and alternative solvent systems 
may be required in some cases. However, regarding the 
comparison with other glycols, such as ethylene glycol 
and polyethylene glycols (PEGs), choosing the PG in the 
structure of DES has some advantages including: (i) eth-
ylene glycol is toxic and not suitable for pharmaceutical 
applications. It is primarily used as an industrial solvent 
and antifreeze. Therefore, it is not a preferred choice for 
pharmaceutical formulations due to its potential health 
risks [20]. (ii) PEGs are polymers of ethylene glycol and 
are commonly used in pharmaceutical formulations as a 
solubilizing agent, stabilizer, and viscosity modifier [21]. 
However, compared to PG, PEGs may have higher viscos-
ity and can be less efficient in solubilizing certain drugs. 
The specific ratio of 1 part ChCl to 3 parts PG was cho-
sen for this study. The reason is that this composition has 
been reported as an effective DES for drug solubilization 
purposes in previous studies [22]. The DES system is 
formed by mixing ChCl and PG in a specific molar ratio, 
resulting in a lower melting point than either compo-
nent alone. This lower melting point allows for the solu-
bilization of drugs that are poorly soluble in traditional 
organic solvents. The 1:3 ChCl:PG ratio was selected as it 

provides a balance between solubilization efficiency and 
solvent viscosity, which is important for drug formulation 
and processing.

Materials and methods
Materials
This work utilized PG sourced from Scharlau Chemie 
(Spain), with a mass fraction purity greater than 0.995, 
ChCl obtained from Daejung (Korea) with a mass frac-
tion purity greater than 0.999, and double-distilled water 
produced in the laboratory (Table 1).

Preparation of ChCl/PG DES
Drying of ChCl was carried out in an oven at a tempera-
ture of 50  °C for 8  h. Subsequently, ChCl and PG were 
weighed in the desired amounts for preparing the sol-
vent mixture, at a molar ratio of 1:3. The two components 
were then mixed and heated on a hot plate at a tempera-
ture of 80 ͦ C while stirring with a magnetic stirrer until a 
clear liquid was formed [23].

Solvent mixtures preparation and determination of their 
densities
After DESs preparation, the eleven mixtures i.e. two 
mono- solvents and nine solvent mixtures in the DES 
ratio of 0.1–0.9 with a mass fraction interval of 0.1 were 
prepared and incubated at 293.2–313.2 K in a Nabziran 
Industrial Group incubator (Iran) until to reach tem-
perature equilibrium. A 2  mL pycnometer was utilized 
for density measuring for each solution. Calibration of 
the pycnometer involves using the densities of distilled 
water at the respective temperatures used [24]. The pyc-
nometer was filled with each prepared solution at desired 
temperatures and measured using a balance (model 
AB204-S, Mettler Toledo, Switzerland). With consider-
ing the weight of the empty pycnometer, the weight of the 
solvent mixture was obtained and used for density com-
puting. The reported data were the mean of three replica-
tions at each temperature and composition.

Table 1 Some details of the purity and chemical structure of the employed  materialsa

a The purity of the employed chemicals was provided by the suppliers

Material Mass fraction 
 puritya

Source Chemical formula Molar mass/g 
 mol−1

Structure

Propylene glycol (PG) 0.995 Scharlau Chemie C3H8O2 76.09

Choline chloride (ChCl) > 0.999 Daejung, Korea C5H14NClO 139.62

Deionized water Made in our laboratory H2O 18.02
H

O

H
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Results and discussion
Density data and mathematical modeling
The measured densities (ρm) at a temperature range of 
293.15 to 313.15 K for the ChCl/PG DES and water mix-
tures in all compositions were given in Table 2. Figure 1 
illustrated the density plot of ChCl/PG DES + water as 
a function of temperature, enabling clarity in visualiza-
tion. Reliability of measured data using a pycnometer 
was investigated by repeating measurements using a den-
sity meter (Anton Paar DSA 5000 M). Density values for 
ChCl/PG DES + water mixtures at 298.2  K were deter-
mined using the density meter and results were given in 
electronic supplementary material (ESM) in Additional 
file  1:Table  S1. As can be seen, there was no significant 
difference between the results of both measurements 
which confirmed the data provided by the pycnometer.

Table 2 and Fig. 1 demonstrated that the densities rise 
with an increase in the mass fraction of DESs, while they 
decreased with an increase in temperature. The decrease 

in density can be attributed to the thermal expansion of 
the liquid volume with a temperature increase, leading to 
a less dense mixture at higher temperatures.

Equation  (1) presents the temperature dependence of 
density values in the studied solutions, using a polyno-
mial expression.

Table  3 showed the model constants (a, b, and c) 
obtained from the least squares analysis for temperature 
T/K.

Furthermore, the corresponding molar volume was cal-
culated using the density of neat DES with the following 
equation:

where MDES and ρDES are the molar mass of DES and its 
density. The molar mass is computed by Eq. (3) [25].

where xHBA , xHBD , MHBA and MHBD are molar ratio 
and molar masses of ChCl as HBA and PG as HBD, 
respectively.

(1)ρm = a+ bT + cT 2

(2)Vm,DES =
MDES

ρDES

(3)MDES =
xHBAMHBA + xHBDMHBD

xHBA + xHBD

Table 2 The density data (g·cm–3) for a binary mixtures of ChCl/PG DES + water at different  temperaturesa

a Standard uncertainty (u) for pressure, temperature, mole fraction of DESs and density is u (P) = 0.5 kPa, u (T) = 0.1 K, u (xDES) = 0.005, u (ρm) = 0.05 kg  m−3, respectively
b xDES is the mole fraction of ChCl/PG DESs dissolved in water
c Standard uncertainty (u) for DES composition was estimated to be less than 0.05 mol ratio

xDES
b,c 293.2 K 298.2 K 303.2 K 308.2 K 313.2 K

0.0000 0.998 ± 0.000 0.997 ± 0.001 0.996 ± 0.000 0.994 ± 0.005 0.992 ± 0.000

0.0213 1.009 ± 0.001 1.007 ± 0.000 1.005 ± 0.000 1.003 ± 0.001 1.000 ± 0.000

0.0467 1.018 ± 0.001 1.016 ± 0.000 1.014 ± 0.000 1.011 ± 0.000 1.009 ± 0.001

0.0775 1.028 ± 0.000 1.025 ± 0.000 1.023 ± 0.000 1.020 ± 0.002 1.018 ± 0.000

0.1155 1.038 ± 0.000 1.035 ± 0.000 1.032 ± 0.0000 1.029 ± 0.001 1.026 ± 0.000

0.1638 1.047 ± 0.000 1.044 ± 0.000 1.041 ± 0.000 1.038 ± 0.000 1.035 ± 0.000

0.2271 1.056 ± 0.010 1.052 ± 0.002 1.050 ± 0.001 1.046 ± 0.000 1.043 ± 0.000

0.3137 1.064 ± 0.000 1.060 ± 0.000 1.058 ± 0.000 1.054 ± 0.002 1.051 ± 0.001

0.4394 1.071 ± 0.000 1.067 ± 0.001 1.0650 ± 0.000 1.061 ± 0.000 1.058 ± 0.002

0.6381 1.076 ± 0.002 1.072 ± 0.001 1.069 ± 0.001 1.065 ± 0.002 1.063 ± 0.001

1.0000 1.077 ± 0.003 1.073 ± 0.003 1.071 ± 0.000 1.067 ± 0.000 1.065 ± 0.001

Fig. 1 Density–temperature plot for a binary mixture of ChCl/PG DES 
and water

Table 3 The model constants (a, b, and c) from the least squares 
analysis at different temperatures for Eq. (1)

DES a 105. b 107. c ARD% ±  102. SD

Bet/PG (molar ratio of 1:3) 1.123 − 1.759 − 8.663 2.15 ± 0.39
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Table  4 showed that the variation of Vm with tem-
perature was comparable across the DES samples, with 
Vm values exhibiting a slight increase as temperature 
increases.

Jouyban-Acree [26, 27] (Eq.  (4)), and Jouyban-Acree-
van’t Hoff [28] (Eq.  5) models were used to represent 
the densities of pseudo-binary mixtures of ChCl/PG 
DES at different temperatures and each model constants 
together with the ARDs% and SDs were collected in 
Table 5.

in these equations, ρm , ρDES , ρw are the density of mix-
ture, neat DES and neat water, respectively. xDES , xw 
correspond to the mole fraction of DES and water, 
respectively. Ji is the model constants.

To assess the precision of each model in depicting den-
sity values in the mixtures, the average relative deviation 
(ARD%) (Eq. 6) and standard deviation (SD) (Eq. 10) were 
calculated.

in Eqs. (6) and (7) ρexp
m  , ρexp

m  , ρcal
m  and N are the experi-

mental densities, the mean experimentally densities, the 
back-computed densities from different equations and 
the data point numbers, respectively.

In addition, modified Jouyban-Acree-van’t Hoff model 
[29, 30], Redlich–Kister [31] and Emmerling [32] were 
also employed for modeling the generated data and the 
related results were given in Additional file 1: Table S2.

(4)ln ρm = xw ln ρw + xDES ln ρDES + xwxDES
N∑
i=0

Ji
(
xw − xDES

T

)i

(5)

ln ρm = wDES

(
ADES +

BDES

T

)
+ ww

(
Aw +

Bw

T

)

+
wDESww

T

2∑
i=0

Ji.(wDES − ww)
i

(6)ARD% =
100

N

∑(∣∣ρexp
m − ρcal

m

∣∣
ρ
exp
m

)

(7)
SD =

√√√√√
N∑
i=1

∣∣∣(ρcal
m − ρ

exp
m

)2∣∣∣
N

Excess molar volume and data correlation
To evaluate the non-ideality of (ChCl/PG DES + water) 
pseudo-binary mixtures, the VE values were calculated 
using Eq. (8).

Tables 6 reported the VE values found for the mixtures 
investigated. These values were fitted with Eq. (9) and the 
corresponding results were presented in Table  7. Addi-
tionally, Table 7 displayed the correlation outcomes of Vm 
values with Eq. (4).

Figure  2 displayed the experimentally and calculated 
VE values as a function of composition and temperature, 
allowing for a visual interpretation of their behavior. The 
negative trend observed throughout the range of compo-
sition and temperature indicated that the volume of mix-
tures was lower than that of an ideal mixture due to the 
strong interactions between DES and water molecules, 
likely attributed to hydrogen bonding between ChCl and 
PG with water molecules. This observation was consist-
ent with previous findings for other pseudo-binary mix-
tures of (DES + water) [11–13, 19, 33, 34]. Additionally, 
the VE values became less negative at higher tempera-
tures in the measured system, indicating that the inter-
molecular interactions between DES and water were 
weakened at elevated temperatures. This may result from 
an increase in hydrogen bond strength due to decreased 

(8)VE
= xDESMDES

(
1
ρm

−
1

ρDES

)
+ xwMw

(
1
ρm

−
1
ρw

)

(9)

ln ρm = xw ln ρw + xDES ln ρDES + xwxDES
N∑
i=0

Si(xw − xDES)i

Table 4 The molar masses and volumes of DES measured at various temperatures

DES Molar mass / (g  mol−1) T/K

293.2 298.2 303.2 308.2 313.2

ChCl/PG (molar ratio of 1:3) 91.97 85.40 85.72 85.88 86.20 86.36

Table 5 Model constants and the ARDs% along with SD for the 
densities of pseudo-binary (ChCl/PG DES + water) mixtures

Jouyban-Acree [Eq. (4)] Jouyban-Acree-van’t Hoff 
[Eq. (5)]

J0
J1
J2
ARD% ± SD

9.905
7.794
5.101
0.05 ± 0.04

ADES
BDES
Aw
Bw
J0
J1
J2
ARD% ± SD

− 0.102
51.48
− 0.096
27.62
10.21
7.829
5.869
0.06 ± 0.03
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intermolecular distances at lower temperatures. The 
behavior of the developed Redlich–Kister equation 
(Eq. 9) was represented by dashed lines.

Apparent properties
The density values acquired for the aforementioned 
mixtures were utilized to calculate the apparent molar 
volume of DES ( Vϕ,DES ) in a water medium using the fol-
lowing equation:

The calculated values of ( Vϕ,DES ) were collected in 
Table  8. It was evident that the values of Vϕ,DES were 
affected by the DES mole fraction and temperature. As 
both DES mole fraction and temperature increase, the 
values of Vϕ,DES also increase. The dependency of Vϕ,DES 
values on molality under isothermal conditions was fit-
ted to the Redlich-Mayer equation [35, 36], which can be 
expressed as:

Equation  (11) expresses V 0
ϕ,DES(cm

3 mol−1) and 
Aυ(cm

3 kg1/2 mol−3/2) as the apparent molar volume in 
infinite dilution and the Debye–Huckel limiting slopes 
for the apparent molar volume, respectively. In addi-
tion,.Bυ(cm

3 kg mol−2) and Cυ(cm
3 kg3/2 mol−5/2) are 

considered as empirical constants that depend on the sol-
ute, solvent, and temperature.
mDES represents the molality of DES present in the mix-

tures. The parameters of Eq. (11) were calculated for DES in 
its aqueous pseudo-binary mixtures using the least square fit 

(10)Vϕ,DES =
MDES

ρm
−

(ρm − ρw)

mDESρmρw

(11)
Vϕ,DES = V 0

ϕ,DES + Avm
1/2
DES + BvmDES + Cvm

3/2
DES

Table 6 The dependence of VE values on DES mole fractions at operational temperatures for pseudo-binary mixtures of ChCl/PG DES 
(molar ratio of 1:3) in water

a Standard uncertainties (u) are u(T) = 0.1 K, u(p) = 0.5 kPa, u(xDES) = 0.005 and the average combined expanded uncertainties Uc (level of confidence = 0.95, k = 2) is 
Uc(VE) = 0.006 ×  106  m3  mol−1

xDES T = 293.2 K T = 298.2 K T = 303.2 K T = 308.2 K T = 313.2 K
VE/cm−3  mol−1 VE/cm−3  mol−1 VE/cm−3  mol−1 VE/cm−3  mol−1 VE/cm−3  mol−1

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0237 − 0.0627 − 0.0541 − 0.0438 − 0.0343 − 0.0269

0.0516 − 0.1057 − 0.0935 − 0.0818 − 0.0739 − 0.0623

0.0853 − 0.1628 − 0.1512 − 0.1378 − 0.1230 − 0.1133

0.1264 − 0.2293 − 0.2135 − 0.1982 − 0.1777 − 0.1627

0.1775 − 0.3028 − 0.2766 − 0.2587 − 0.2369 − 0.2124

0.2452 − 0.3624 − 0.3418 − 0.3207 − 0.2972 − 0.2764

0.3355 − 0.4389 − 0.4148 − 0.3967 − 0.3710 − 0.3514

0.4601 − 0.4865 − 0.4663 − 0.4431 − 0.4186 − 0.3957

0.6609 − 0.4105 − 0.3839 − 0.3694 − 0.3456 − 0.3283

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 7 The model constants of Redlich–Kister obtained by 
fitting the VE values for the investigated solutions at different 
temperatures

Redlich–Kister equation [Eq. (7)]

System T/K S0 S1 S2 ARD% ±  102. SD

ChCl/PG 
DES + water

293.2 − 1.908 − 0.203 − 0.0219 3.54 ± 0.61

298.2 − 1.820 − 0.231 0.1642 3.31 ± 0.55

303.2 − 1.746 − 0.195 0.2531 2.59 ± 0.39

308.2 − 1.650 − 0.188 0.3818 1.25 ± 0.32

313.2 − 1.571 − 0.158 0.4747 3.35 ± 0.36

OARD% ± SD 2.81 ± 0.45

Fig. 2 The excess molar volume (VE) for pseudo-binary mixtures 
of ChCl/PG DES (at a molar ratio of 1:3) in water calculated 
and plotted against DES mole fraction (xDES) at various temperatures: 
( ), T/K = 293.15; ( ), T/K = 298.15; ( ), T/K = 303.15; ( ), T/K = 308.15; (
), T/K = 313.15; the dashed lines obtained from fitting the VE values 
with Redlich–Kister equation
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method, and the outcomes were depicted in Table 9. Accord-
ing to the presented results in Table 9, it was evident that the 
values for DES in water were positive, indicating the exist-
ence of robust interactions between DES and water.

Alternatively, the rise in V 0
ϕ,DES values at higher tem-

peratures can be explained by examining the primary and 
secondary solvation layers. An augmentation in tempera-
ture results in the release of solvent molecules from the 
secondary hydration layer of solutes into the bulk of the 
solvent, leading to the expansion of the primary layer. 
This was reported in recent studies for numerous systems 
[19, 37, 38]. In comparison to the Bυ values, the higher 
V 0
ϕ,DES values suggest that the interactions between DES 

and water were stronger than those of the self-interac-
tions of molecules (such as DES-DES or water-water) 
across all temperatures.

Apparent molar volume was utilized to determine the 
partial molar volume ( VDES ) of ChCl/PG DES in water 
medium by the following equation [39]:

Table  8 provided the computed VDES values, which 
exhibit the same pattern as the Vϕ,DES values.

The temperature-dependence of V 0
ϕ,DES values can be 

expressed with Eq. (13) [19], as seen Table 9.

Two crucial parameters were calculated using the first 
and second derivatives of V 0

ϕ,DES values with regard to 
temperature, i.e. the limiting apparent molar expansibil-
ity ( φ0

E,DES ) of neat DES and Hepler’s constant 

( 
(

∂2V 0
ϕ,DES

∂T 2

)

p

 ) with the Eqs. (14) and (15). The results 

were also reported in Table 9.

Table 9 displayed the favorable φ0
E,DES values for ChCl/

PG DES aqueous pseudo-binary solutions at the oper-
ating temperature, which indicate solvation and elec-
trostriction of solutes in an aqueous environment [40]. 
This observation could be explained by the speedy 
transfer of water molecules from the DES hydration 

(12)VDES = Vϕ,DES +mDES

(
∂Vϕ,DES

∂mDES

)

(13)Vϕ,DES = a1 + b1T + c1T
2

(14)φ0
E,DES =

(
∂V 0

ϕ,DES

∂T

)

p

= B+ 2CT

(15)

(
∂2V 0

ϕ,DES

∂T 2

)

p

= 2C

layers to the neat water. Additionally, the positive val-
ues of Hepler’s constant revealed that ChCl/PG DES has 
a structure-making effect on the water medium at the 
operating temperatures, as mentioned in reference [41].

Understanding the impact of temperature on liquid 
expansion is crucial for equipment design. As the tem-
perature of a liquid increases, its volume also increases 
due to the kinetic energy of its molecules. This phe-
nomenon is known as thermal expansion. The amount 
of expansion is proportional to the temperature change 
and the initial volume of the liquid. This relationship is 
expressed by the coefficient of thermal expansion, which 
is a measure of how much a material expands per unit 
length for a given temperature change. This information 
can be obtained through the isobaric thermal expansion 
coefficient ( αp,m ) calculated using Eq. (16).

Table  9 indicates that the αp,m values declined as the 
temperature increased.

Conclusion
The densities of ChCl and PG (at a ratio of 1:3) deep 
eutectic solvents were experimentally determined over a 
range of temperatures, and based on these measure-
ments, certain physicochemical properties such as VE , 

φ0
E,DES , φ0

E,DES , αp,m , and 
(

∂2V 0
ϕ

∂T 2

)

p

 were calculated. The 

fact that VE values were negative for the entire range of 
mole fractions and temperatures in the aqueous pseudo-
binary DES mixtures suggests that DES and water mole-
cules interact favorably with each other. Additionally, an 
increase in the temperature resulted in an increase in the 
limiting apparent molar volume ( V 0

ϕ,DES ), which further 
supports the idea that favorable DES-water interactions 
occur in these mixtures. In addition, the fact that Help-
er’s constant had positive values indicates that DES func-
tions as a structure-maker in a water-based medium. 
Furthermore, several models, including Jouyban-Acree, 
Jouyban-Acree-van’t Hoff, modified Jouyban-Acree-van’t 
Hoff, Redlich–Kister, and Emmerling were utilized to 
represent the experimental densities. Based on the 
results, the order of the models’ effectiveness in density 
correlation was determined as follows: Redlich–Kister 
equation  (0.01 ± 0.01) > Emmerling model 
(0.02 ± 0.02) > Jouyban-Acree (0.05 ± 0.04) = modified 
Jouyban-Acree-van’t Hoff model (0.05 ± 0.04) > Jouyban-
Acree-van’t Hoff model (0.06 ± 0.03).

(16)αp,m =
φ0
E,DES

V 0
ϕ,DES
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