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Abstract 

In this study, we synthesized new 5,6,7,8-tetrahydroisoquinolines and 6,7,8,9-tetrahydrothieno[2,3-c]isoquinolines 
based on 4-(N,N-dimethylamino)phenyl moiety as expected anticancer and/or antioxidant agents. The structure of all 
synthesized compounds were confirmed by spectral date (FT-IR, 1H NMR, 13C NMR) and elemental analysis. We evalu-
ated the anticancer activity of these compounds toward two cell lines: A459 cell line (lung cancer cells) and MCF7 cell 
line (breast cancer cells). All tested compounds showed moderate to strong anti-cancer activity towards the two cell 
lines. Compound 7e exhibited the most potent cytotoxic activity against A549 cell line  (IC50: 0.155 µM) while com-
pound 8d showed the most potent one against MCF7 cell line  (IC50: 0.170 µM) in comparison with doxorubicin. 
In addition, we examined the effect of compounds 7e and 8d regarding the growth of A549 and MCF7 cell lines, 
employing flow cytometry and Annexin V-FITC apoptotic assay. Our results showed that compound 7e caused 
cell cycle arrest at the G2/M phase with a 79-fold increase in apoptosis of A459 cell line. Moreover, compound 8d 
caused cell cycle arrest at the S phase with a 69-fold increase in apoptosis of MCF7 cell line. Furthermore, we studied 
the activity of these compounds as enzyme inhibitors against several enzymes. Our findings by docking and experi-
mental studies that compound 7e is a potent CDK2 inhibitor with  IC50 of 0.149 µM, compared to the Roscovitine 
control drug with  IC50 of 0.380 µM. We also found that compound 8d is a significant DHFR inhibitor with an  IC50 
of 0.199 µM, compared to Methotrexate control drug with  IC50 of 0.131 µM. Evaluation of the antioxidant properties 
of ten compounds was also studied in comparison with Vitamin C. Compounds 1, 3, 6, 7c and 8e have higher antioxi-
dant activity than Vitamin C which mean that these compounds can used as potent antioxidant drugs.
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Graphical Abstract

Introduction
Nowadays cancer is one of the most dangerous diseases 
in the world and it has risen to the position of the lead-
ing cause of death around the globed due to the inher-
ent resistance of many types of cancer to conventional 
radiotherapy and chemotherapy [1]. So many strategies 
have been admitted treating cancer patients. One modal-
ity is through inhibition of cell cycle regulators enzymes 
of cancer cells such as inhibition of CDKs [2] and DHFR 
enzymes [3], epidermal growth factor (EGF) [2], Ras, and 
Tubulin proteins [4]. CDKs (cyclin-dependent kinases) 
are serine/threonine kinases enzymes that play a crucial 
role in regulating eukaryotic cell cycle [5], apoptosis, 
differentiation, and transcription. So, controlling CDKs 
activity has emerged as a promising therapeutic approach 
[5, 6]. CDK2 is one of CDK families which exist as an 
inactive form [5, 6], upon binding to its regulatory part-
ners cyclin A or cyclin E. Which formed a functional het-
erodimeric complex to control cell cycle progression [7, 
8]. Previous studies found that CDK2 is over-activated 
in many types of cancer [8]. Which makes CDK2 inhi-
bitions is a desirable target for cancer treatment [9, 10]. 
CDK2 inhibitors could be classified as ATP-competitive 
and non-ATP-competitive based on their binding site 
[11]. Roscovitine and Flavopiridol are the most common 

commercial CDK2 inhibitors drugs where their structure 
based on heterocyclic moiety [12].

Dihydrofolate reductase enzyme (DHFR) is responsible 
for reduction of dihydrofolate (DHF) to tetrahydrofolate 
(THF). THF is essential for DNA synthesis, cell growth, 
and the production of raw materials for cell proliferation 
in both normal and cancer cells [13]. Therefor inhibitions 
of DHFR is an important target to prevent cell spreading 
[14]. Moreover DHFR enzyme required to maintain bac-
terial growth [15, 16]. Due to its critical role in nucleo-
tide biosynthesis. Hence inhibitors of DHFR have been 
proven in as effective agents for treating bacterial infec-
tions [16]. Methotrexate is the most effective commercial 
drug for DHFR inhibition which contain heterocyclic 
atoms. In addition it has been approved to be effective in 
reducing cancer symptoms in children with acute lymph-
oblastic leukemia [14, 15].

Generally heterocyclic compounds were reported 
to be used as CDK2 inhibitors as reported in previ-
ous work such as pyridazines derivatives [5]. Oxindoles 
compounds [7], 6-Substituted 2-Arylaminopurines com-
pounds [8], and Thiazolone compounds [11]. In addition, 
Recent literature showed that all new DHFR inhibitors 
contain heterocyclic moieties in their structure such as 
pyridine, quinoline and isoquinoline moieties [14, 17].
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Isoquinoline ring is one of the heterocyclic com-
pounds which reported to has various biological activi-
ties, including antimicrobial [18], anti-oxidant [19], 
anti-inflammatory [19, 20], antipyretic [20], antihyper-
tensive [21], antitumor [22–25] and anti-proliferative 
effects [26, 27]. Many isoquinoline alkaloids, including 
cepharanthine, berberine, and tetrandrine, have shown 
anti-inflammatory effect [28]. Therefore, a huge effort has 
been spent in developing novel and effective isoquino-
line derivatives. Furthermore, increased interest in par-
tially hydrogenated isoquinoline derivatives is related to 
the presence of an isoquinoline fragment in molecules of 
many alkaloids, which give new biologically active com-
pounds. Synthetic 1,2,3,4- and 5,6,7,8-tetrahydroisoqui-
noline derivatives were reported to exhibit antitumor 
[29–32], antihypertensive and neurotropic activities [33].

In view of the above observations, the current work 
was designed to synthesize and characterize some new 
(5,6,7,8-tetrahydroisoquinolin-3-yl)Thio compounds 
and related 6,7,8,9-tetrahyrothieno[2,3-c]isoquinolines 
incorporating 4-(N,N-dimethylamino) phenyl moiety to 
be examined as anticancer agents and antioxidant drugs. 
Dimethylamino moiety was chosen in this work because 
of its remarkable antioxidant activities [34] as they asso-
ciate to the proton donors active groups in the surfaces 
like amino or methyl groups. These groups can interact 
by inter molecular reactions on the surface of DPPH to 
give antioxidant activities through hydrogen atom trans-
fer reaction [35] in comparison with vitamin C drug. In 
addition to the tetrahydroisoquinolines anticancer [31, 
32] properties in comparison with doxorubicin control 
and compounds 7e and 8d were the most potent com-
pounds. Furthermore, the effect of compounds 7e and 
8d on induced apoptosis and cell cycle arrest of the can-
cer cell lines were also included. Moreover, the enzyme 
inhibitory activities and molecular docking of two selec-
tive tetrahydroisoquinolines 7e and 8d were studied.

Materials and methods
Chemicals and instrumentations
Chemicals: chemicals of this work (4-(N,N-dimethyl-
aminobenzaldhyde, Cyanothioacetamide, Piperidine, 
Methyl iodide, Ethyl Chloroacetate, 2-Chloroacetamide, 
Chloroacetonitrile or N-aryl-2-Chloroacetamides, Etha-
nol, Sodium acetate.3H2O, Sodium carbonate) were pur-
chased from Sigma Aldrich Co.

Instrumentations: Melting points were determined 
on a Gallan-Kamp apparatus and are uncorrected. The 
purity of the compounds was ensured by TLC and the 
spectroscopic analysis.

IR spectra were recorded on a Shimadzu 470 IR-
spectrophotometer (KBr; νmax in  cm−1). The 1H and 13C 
NMR spectra were recorded on Varian A5 500  MHz 

spectrometer using DMSO-d6 as a solvent and tetra-
methylsilane (TMS) as an internal reference. Coupling 
constants (J values) are given in Hertz (Hz). Elemen-
tal analyses were performed on a Perkin Elmer 2400 LS 
Series CHN/O analyzer.

Cell lines: The in vitro human breast cancerous cell line 
(MCF7), lung cancerous  cell lines (A549) and normal cell 
lines were purchased from Serum and Vaccine formula-
tion in Cairo-Egypt.

Molecular docking: Molecular docking studies were 
performed in (I Mole Lab for bioinformatics, Cairo, 
Egypt).

Softwares: The biological data was analyzed and plot by 
Graphpad prism, Cell qust, ANOVA, Origin Lab, Auto-
Dock Vina 1.1.2, Mestrenova and Excel software.

7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hydroxy‑8‑(4‑N,N‑dimeth‑
ylaminophenyl)‑5,6,7,8‑tetrahydroisoquino‑
line‑3(2H)‑thione (1)
A mixture of 2,4-diacetyl-5-hydroxy-5-methyl-3-(4-(N,N-
dimethylaminophenyl) cyclohexanone (3.3  g,10  mmol), 
2-cyanothioacetamide (1.0  g,10  mmol) and piperidine 
(0.8 mL, 10 mmol) in ethanol (30 mL) was refluxed for 2 h. 
The yellow crystals that formed on cooling were collected, 
washed with methanol, and dried in air to give compound 
1. Yield: 98%; m. p: 283–284  °C. IR: 3432 (O–H), 3273 
(N–H); 3142 (C–H,  sp2); 2885 (C–H,  sp3); 2216 (C≡N); 
1709 (C=O); 1619 (C=N). 1H NMR: δ 13.78 (s, 1H, NH); 
6.88 (d, 2H, J = 10  Hz, Ar–H); 6.61 (d, J = 10  Hz, 2H, 
Ar–H), 4.83 (s, 1H, OH); 4.27 (d, J = 10 Hz, 1H,  C8H); 3.45 
(d, J = 10 Hz, 2H:  C5H and  C7H), 3.28(s,1H,  C6H) 2.87 (m, 
7H:  C5H and N(CH3)2); 2.09 (s, 3H,  CH3, attached to C-1); 
1.90 (s, 3H,  COCH3); 1.24 (s, 3H,  CH3) ppm. 13C NMR: 
δ 209.97, 182.75, 178.99, 174.94, 155.49, 155.41, 152.98, 
149.21, 129.18, 129.03, 125.05, 116.90, 113.88, 113.01, 
68.16, 68.07, 66.22, 56.49, 31.55, 28.11, 28.01, 19.01 ppm. 
Anal. Calcd. for  C22H25N3O2S (395.17): C, 66.81; H, 6.37; 
N, 10.62%. Found: C, 66.61; H, 6.40; N, 10.78%.

Reaction of compound 1 with methyl iodide, ethyl 
chloroacetate, 2‑chloroacetamide, chloroacetonitrile 
or N‑aryl‑2‑chloroacetamides 2a–e: synthesis of com‑
pounds 3, 4, 5, 6 and 7a–e
A mixture of 1 (3.95 g, 10 mmol), methyl iodide (0.7 mL, 
10 mmol), ethyl chloroacetate (1 mL, 10 mmol), 2-chloro-
acetamide (0.93 g, 10 mmol), chloroacetonitrile (0.8 mL, 
10  mmol)or N-aryl-2-chloroacetamide 2a–e (10  mmol), 
and sodium acetate trihydrate (1.50 g, 11 mmol) in eth-
anol (100  mL) was refluxed for one hour. The reaction 
mixture was then allowed to stand at room temperature 
overnight. After that the precipitate was collected and 
recrystallized from ethanol as colorless crystals of title 
compounds 3, 4, 5, 6, and 7a–e respectively.
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7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑3‑methylthio‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethyl‑aminophenyl)‑5,6,7,8‑tetrahy‑
droisoquinoline (3)
Yield: 94%; m.p.: 162–163  °C. IR: 3510 (O–H); 2967, 
2909 (C–H,  sp2); 2217 (C≡N); 1696 (C=O, acetyl); 1612 
(C=N). 1H NMR: δ 6.83 (d, J = 5 Hz, 2H, Ar–H); 6.61 (t, 
J = 5 Hz, 2H, Ar–H); 4.78 (s, 1H, OH), 4.39 (d, J = 5 Hz, 
1H,  C8H), 3.18 (dd, J = 7,10 Hz, 3H:  C7H and  C5H2), 2.86 
(m, 9H:  SCH3 and N(CH3)2), 2.11(d, J = 7 Hz, 3H, at C-1), 
2.00 (s, 3H,  CH3,  COCH3), 1.25(d, J = 10  Hz, 3H,  CH3) 
ppm. 13C NMR: δ 209.69, 165.72, 161.03, 157.43, 149.23, 
148.72, 130.71, 130.08, 128.60, 115.30, 112.40, 104.17, 
67.58, 66.31, 43.28, 42.06, 31.12, 27.61, 24.78, 23.73, 
14.54. Anal. Calcd. for  C23H27N3O2S (409.18): C, 67.45; 
H, 6.65; N, 10.26%. Found: C, 67,42; H: 6.58, N; 10.30%.

Ethyl 2‑((7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethylamino‑phenyl)‑5,6,7,8‑tetrahy‑
droisoquinolin‑3‑yl)thio)acetate (4)
Yield: 78%; m.p.: 159–160  °C. IR: 3506 (O–H); 2983, 
2964, 2809 (C–H,  sp3); 2215 (C≡N); 1740 (C=O, ester); 
1695 (C=O, acetyl). 1H NMR: δ 6.81 (d, J = 10  Hz, 2H, 
Ar–H), 6.58 (d, J = 10  Hz, 2H, Ar–H), 4.81 (s, 1H, OH), 
4.38 (d, J = 9  Hz, 1H,  C8H), 4.05 (m, 4H:  SCH2 and 
 OCH2),  C5H and), 3.22 (d, J = 10  Hz, 1H,  C5H), 2.87 (d, 
J = 10 Hz, 8H:  C7H,  C5H and N(CH3)2), 2.11 (s, 3H,  CH3, 
at C-1), 1.93 (s, 3H,  COCH3), 1.25 (s, 3H,  CH3), 1.12 
(d, J = 5  Hz, 3H,  CH3 of ester group) ppm. 13C NMR: δ 
209.62, 168.58, 160.96, 156.15, 149.43, 148.74, 130.57, 
128.63, 115.09, 112.38, 103.71, 67.59, 66.28, 60.90, 42.02, 
40.00, 31.98, 31.10, 27.58, 24.49, 14.00. Anal. Calcd. for 
 C26H31N3O4S(481.20): C, 64.84; H, 6.49; N, 8.72%. Found: 
C, 64.98; H, 6.44; N, 8.51%.

2‑[(7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethylamino‑phenyl)‑5,6,7,8‑tetrahy‑
droisoquinolin‑3‑yl)thio]acetamide (5)
Yield: 85%; m.p.: 196–197 °C. IR: 3562 (O–H); 3436, 3295, 
3181  (NH2); 2971, 2809 (C–H,  sp3); 2219 (C≡N); 1698 
(C=O, acetyl); 1667 (C=O, amide). 1H NMR: δ 7.50 (s, 
1H, NH), 7.05 (s, 1H, NH), 6.82 (d, J = 10 Hz, 2H, Ar–H), 
6.60 (d, J = 9  Hz, 2H, Ar–H), 4.75 (s, 1H, OH), 4.39 (d, 
J = 15 Hz, 1H,  C8H), 3.88 (d, J = 12 Hz, 15 Hz, 2H,  SCH2), 
 C5H and), 3.26 (d, J = 10 Hz, 1H,  C5H), 2.89 (m, 8H:  C7H, 
 C5H and N(CH3)2), 2.11 (s, 3H,  CH3, at C-1), 1.99 (s, 3H, 
 COCH3), 1.26 (s, 3H,  CH3) ppm. 13C NMR: δ 210.02, 
169.55, 161.45, 157.33, 149.80, 149.20, 131.21, 130.84, 
129.14, 115.73, 112.95, 104.19, 68.07, 66.77, 43.77, 42.50, 
33.82, 31.59, 28.07, 25.11.

Anal. Calcd. for  C24H28N4O3S (452.19): C, 63.69; H, 
6.24; N, 12.38%. Found: C, 63.37; H, 6.18; N, 12.41%.

2‑[(7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethylamino‑phenyl)‑5,6,7,8‑tetrahy‑
droisoquinolin‑3‑yl)thio]acetonitrile (6)
Yield:90%; m.p.: 145 °C. IR: 3537 (O–H); 2966, 2924,2801 
(C–H,  sp3); 2246 (C≡N, non conjugated); 2217 (C≡N, 
conjugated); 1698 (C=O, acetyl). 1H NMR: δ 6.85 (d, 
J = 10 Hz, 2H, Ar–H), 6.61 (d, J = 10 Hz 2H, Ar–H), 4.79 
(s, 1H, OH), 4.44 (d, J = 8  Hz, 1H,  C8H), 4.32 (s, 2H, 
 SCH2), 3.27 (d, 1H,  C5H), 2.92(d, J = 8 Hz, 2H,  C7H and 
 C5H), 2.89 (d, J = 10 Hz, 6H: N(CH3)2), 2.12 (s, 3H,  CH3, 
at C-1), 2.07 (s, 3H,  COCH3), 1.27 (s, 3H,  CH3) ppm. 13C 
NMR: δ 210.26, 162.04, 154.32, 150.40, 149.25, 132.05, 
130.91, 129.19, 118.20, 115.25, 112.95, 104.66, 68.09, 
66.69, 43.83, 42.55, 31.63, 27.98, 25.14, 15.74 ppm. Anal. 
Calcd. for  C24H26N4O2S (434.18): C, 66.33; H, 6.03; N, 
12.89%. Found: C, 65.72; H, 5.71; N, 13.09%.

2‑[(7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethylamino‑phenyl)‑5,6,7,8‑tetrahy‑
droisoquinolin‑3‑yl)thio]‑N‑phenylacetamide (7a)
Yield: 80%; m.p.: 209–210  °C. IR: 3459 (O–H); 3247 
(N–H); 2971, 2805 (C–H,  sp3); 2211 (C≡N); 1706 (C=O, 
acetyl); 1683 (C=O, amide). 1H NMR: δ 10.21 (s, 1H, 
NH), 7.52 (d, J = 10 Hz, 2H, Ar–H), 7.27 (t, J = 10 Hz, 2H, 
Ar–H), 7.02 (m, 1H, Ar–H), 6.80 (d, J = 10 Hz, 2H, Ar–H), 
6.57 (d, J = 10 Hz, 2H, Ar–H), 4.80 (s, 1H, OH), 4.37 (d, 
J = 10 Hz, 1H,  C8H), 4.1 (dd, J = 10 Hz, 13 Hz, 2H,  SCH2), 
3.23(d, J = 17 Hz, 1H,  C5H), 2.87 (m, 4H:  C7H and  C5H), 
2.83 (s, 6H, N(CH3)2), 2.10 (s, 3H,  CH3, at C-1), 1.92 
(s, 3H,  COCH3), 1.24 (s, 3H,  CH3). 13C NMR: δ 217.44, 
209.63, 166.10, 160.95, 156.74, 149.35, 148.72, 138.90, 
130.61, 130.48, 128,69, 128.61, 123.26, 119.04, 115.19, 
112.38, 103.66, 67.57, 66.28, 43.29, 41.99, 34.68, 31.06, 
27.58, 24.54. Anal. Calcd. for  C30H32N4O3S (528.22): C, 
68.16; H, 6.10; N, 10.60%. Found: C, 68.10; H, 6.15; N, 
10.46%.

2‑[(7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethylamino‑phenyl)‑5,6,7,8‑tetrahy‑
droisoquinolin‑3‑yl)thio]‑N‑(4‑tolyl)acetamide (7b)
Yield: 95%; m.p.:198–199  °C. IR: 3436 (O–H); 3251 
(N–H); 3119 (C–H,  sp2); 2964,2908 (C–H,  sp3); 2216 
(C≡N); 1706 (C=O, acetyl); 1675 (C=O, amide). 1H 
NMR: δ 10.11 (s, 1H, NH), 7.39 (d, J = 9 Hz, 2H, Ar–H), 
7.07 (d, J = 8 Hz, 2H, Ar–H), 6.80 (d, J = 9 Hz, 2H, Ar–H), 
6.57 (d, J = 9  Hz, 2H, Ar–H), 4.79 (s, 1H, OH), 4.37 (d, 
J = 10  Hz, 1H,  C8H), 4.085 (dd, J = 4, 7  Hz, 2H,  SCH2), 
3.23 (d, J = 17 Hz, 1H,  C5H), 2.87 (m, 2H,  C7H and  C5H), 
2.83 (s, 6H, N(CH3)2), 2.22 (s, 3H,  CH3 of 4-tolyl group), 
2.10 (s, 3H,  CH3, at C-1), 1.92 (s, 3H,  COCH3), 1.24 (s, 
3H,  CH3) ppm. 13C NMR: δ 209.62, 165.83, 160.93, 
156.77, 149.33, 148.70, 136.40, 132.16, 130.61,130.45, 
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129.06, 128.61, 119.05, 115.18, 112.37, 103.64, 67.56, 
66.27, 43.28, 41.98, 34.64, 31.05, 27.57, 24.53, 20.38 ppm. 
Anal. Calcd. For  C31H34N4O3S (542.24): C, 68.61; H, 6.31; 
N, 10.32%. Found: C, 68.52; H, 6.45; N, 10.11%.

2‑[(7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethylamino‑phenyl)‑,5,6,7,8‑tetrahy‑
droisoquinolin‑3‑yl)thio]‑N‑(4‑chlorophenyl)acetamide (7c)
Yield: 96%; m.p.: 214–215  °C. IR: 3458 (O–H); 3242 
(N–H); 2966, 2804 (C–H,  sp3); 2214 (C≡N); 1685 (2C=O, 
acetyl and amide); 1610 (C=N). 1H NMR: δ 10.36 (s, 1H, 
NH), 7.55 (d, J = 10 Hz, 2H, Ar–H), 7.32 (t, J = 10 Hz, 2H, 
Ar–H), 6.80 (d, J = 9 Hz, 2H, Ar–H), 6.57 (d, J = 8 Hz, 2H, 
Ar–H), 4.80 (s, 1H, OH), 4.37 (d, J = 10 Hz, 1H,  C8H), 4.11 
(dd, J = 12,15 Hz 2H,  SCH2), 3.23 (d, J = 17 Hz, 1H,  C5H), 
2.89 (m, 2H,  C7H and  C5H), 2.84 (s, 6H, N(CH3)2), 2.10 (s, 
3H,  CH3, at C-1), 1.90 (s, 3H,  COCH3), 1.25 (s, 3H,  CH3) 
ppm. 13C NMR: δ 209.62, 166.32, 160.93, 156.67, 149.34, 
148.71, 137.86, 130.58, 130.49,128.60, 126.81, 120.56, 
115.16, 112.36, 103.66, 67.51, 66.26, 43.28, 41.99, 34.69, 
31.07, 27.57, 24.50 ppm. Anal. Calcd. For  C30H31ClN4O3S 
(562.18): C, 63.99; H, 5.55; N, 9.95%. Found: C, 64.15; H, 
5.48; N, 9.84%.

2‑[(7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethylamino‑phenyl)‑5,6,7,8‑tetrahy‑
droisoquinolin‑3‑yl)thio]‑N‑(4‑acetylphenyl)acetamide (7d)
Yield:93%; m.p.: 205  °C. IR: 3490 (O–H); 3244 (N–H); 
3033 (C–H,  sp2); 2922 (C–H,  sp3); 2215 (C≡N); 1690 
(3C=O, acetyl and amide); 1614 (C=N). 1H NMR: δ 
10.62 (s, 1H, NH), 7.89 (d, J = 10  Hz, 2H, Ar–H), 7.67 
(d, J = 10  Hz, 2H, Ar–H), 6.80 (d, J = 13  Hz, 2H, Ar–H), 
6.55 (d, 2H, Ar–H), 4.80 (s, 1H, OH), 4.36 (d, J = 10 Hz, 
1H,  C8H), 4.15 (dd, J = 11, 13  Hz 2H,  SCH2), 3.23 (d, 
J = 20  Hz, 1H,  C5H), 2.87 (d, J = 12  Hz, 2H,  C7H and 
 C5H), 2.82 (s, 6H, N(CH3)2), 2.50 (s, 3H,  COCH3 attached 
to phenyl group and overlapped with solvent proton), 
2.10 (s, 3H,  CH3, at C-1), 1.88 (s, 3H,  COCH3), 1.24 (s, 
3H,  CH3). 13C NMR: δ 209.26, 196.36, 166.83, 160.75, 
156.63, 149.38, 148.70,143.72, 131.68, 130.57, 129.45, 
128.61, 118.22,115.33, 112.57, 103.72, 67.57, 66.27, 43.28, 
41.97, 34.82, 31.05, 27.57, 26.34, 24.47. Anal. Calcd. 
for:  C32H34N4O4S: (570.23): C, 67.35; H, 6.00; N, 9.82%. 
Found: C, 67.00; H, 5.88; N, 9.79%.

2‑[(7‑Acetyl‑4‑cyano‑1,6‑dimethyl‑6‑hy‑
droxy‑8‑(4‑N,N‑dimethylamino‑phenyl)‑5,6,7,8‑tetrahy‑
droisoquinolin‑3‑yl)thio]‑N‑(naphthalen‑1‑yl)acetamide (7e)
Yield: 88%; m.p.: 194–195  °C. IR: 3506 (O–H); 3288 
(N–H); 3114 (C–H,  sp2); 2968–2804 (C–H,  sp3); 2217 
(C≡N); 1696 (2 C=O, acetyl and amide); 1611 (C=N). 1H 
NMR: δ 10.20 (s, 1H, NH), 7.94 (d, J = 10 Hz, 2H, Ar–H), 
7.75 (d, J = 7 Hz, 1H, Ar–H), 7.57 (d, J = 8 Hz, 1H, Ar–H), 

7.46 (d, J = 10, 2H, Ar–H), 7.33 (m, 1H, Ar–H), 6.85 (d, 
J = 9  Hz, 2H, Ar–H), 6.59 (d, J = 8  Hz, 2H, Ar–H), 4.83 
(s, 1H, OH), 4.42 (d, J = 10 Hz, 1H,  C8H), 4.30 (dd, J = 15, 
17 Hz, 2H,  SCH2), 3.27 (d, J = 20 Hz, 1H,  C5H), 2.93 (d, 
J = 10 Hz, 1H,  C7H), 2.86 (m, 7H:  C5H and N(CH3)2), 2.12 
(s, 3H,  CH3, at C-1), 2.04 (s, 3H,  COCH3), 1.27 (s, 3H, 
 CH3). 13C NMR: δ 202.84, 166.93, 161.10, 156.89, 149.39, 
148.73, 133.61, 130.86, 128.69, 128.03, 125.48, 122.72, 
121.71, 115.36, 112.24, 103.43, 67.61, 66.28, 43.33, 42.07, 
34.17, 31.14, 27.60, 24.69. Anal. Calcd. for:  C34H34N4O3S 
(578.24): C, 70.56; H, 5.92; N, 9.68%. Found: C, 70.43; H, 
5.89; N, 9.85%.

7‑Acetyl‑1‑amino‑2‑(N‑arylcarbamoyl)‑5,8‑dimethyl‑8‑hy‑
droxy‑6‑(4‑N,N‑dimethylaminophenyl)‑6,7,8,9‑tetrahydrot
hieno[2,3‑c]isoquinolines 8a–d: general procedures
Method A
To a suspension of 7a–e (10  mmol) in abs. ethanol 
(60  mL), anhydrous sodium carbonate (0.30  g) was 
added. The reaction mixture was refluxed for 3  h. The 
yellow crystals that formed while hot were collected, 
washed with water, dried in air, and then crystallized 
from dioxane to give 8a–e.

7 - A c e t y l - 1 - a m i n o - 5 , 8 - d i m e t h y l - 8 - h y -
dro xy-6- (4-N, N- dimethyl aminophenyl) -N-phe-
nyl-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-car-
boxamide (8a) Yield: 96%; m.p.: 260  °C. IR:3501, 3451 
(O–H,  NH2 and NH); 3123 (C–H,  sp2); 2990, 2810(C–H, 
 sp3); 1695 (C=O, acetyl); 1631 (C=O, amide). 1H NMR: 
δ 9.40 (s, 1H, NH), 7.69 (d, J = 8 Hz, 2H, Ar–H), 7.33 (d, 
J = 8 Hz, 2H, Ar–H), 7.07 (m, 3H, Ar–H), 6.78 (br s, 2H, 
 NH2), 6.59 (d, J = 9 Hz, 2H, Ar–H), 4.70 (br s, 1H, OH), 
4.48 (d, J = 10 Hz, 1H,  C6H), 3.57 (d, J = 17 Hz, 1H,  C9H), 
3.39 (d, 1H,  C7H), 2.84 (m,7H:  C9H and N(CH3)2), 2.14 
(s, 3H,  CH3, at C-5), 2.04 (s, 3H,  COCH3), 1.29 (s, 3H, 
 CH3). 13C NMR: δ 210.27, 164.37, 158.77, 155.97, 149.45, 
148.61, 141.95, 138.89, 131.73, 130.04, 128.47, 128.34, 
123.38, 122.88, 121.24, 112.43, 96.88, 67.18, 66.59, 42.39, 
40.05, 31.19, 28.02, 24.65. Anal. Calcd. for  C30H32N4O3S 
(528.22): C, 68.16; H, 6.10; N, 10.60%. Found: C, 68.02; H, 
6.00; N, 10.27%.

7 - A c e t y l - 1 - a m i n o - 5 , 8 - d i m e t h y l - 8 - h y -
droxy-6-(4-N,N-dimethylaminophenyl)-N-(4-tolyl)-6,7,
8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide 
(8b) Yield:93%; m.p.: 289–290 °C. IR: 3394, 3327 (O–H, 
 NH2, NH); 2915, 2798 (C–H,  sp3); 1703 (C=O, acetyl); 
1614 (C=N). 1H NMR: δ 9.33 (s, 1H, NH), 7.58 (s, 2H, 
Ar–H), 7.15 (s, 2H, Ar–H), 7.02 (d, J = 64 Hz, 2H, Ar–H), 
6.76 (s, 2H,  NH2), 6.59 (d, J = 10 Hz, 2H, Ar–H), 4.66 (s, 
1H, OH), 4.48 (d, J = 94 Hz, 1H,  C6H), 3.57 (m, 2H,  C9H 
and  C7H), 2.85 (m, 7H,  C9H and N(CH3)2), 2.28 (s, 3H, 
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 CH3 of 4-tolyl group), 2.14 (s, 3H,  CH3, at C-5), 2.03 (s, 3H, 
 COCH3), 1.28 (s, 3H,  CH3). 13C NMR: δ 209.98, 209.69, 
164.24, 158.91, 158.61, 158.31, 158.14, 158.00, 155.72, 
149.22, 142.52, 129.06, 123.34, 121,47, 121.42, 118.74, 
118.28, 118.23, 118.19, 116.44, 114.14, 111.85, 103.52, 
97.26, 67.27, 66,35, 43.94, 42.69, 31.03, 27.99, 24.46, 20.49 
Anal. Calcd. for  C31H34N4O3S (542.24) C, 68.61; H, 6.31; 
N, 10.32%. Found; C, 68.57; H, 6.66; N, 10.24%.

7-Acetyl-1-amino-N-(4-chlorophenyl)-5,8-dimethyl-8-hy-
droxy-6-(4-N,N-dimethyl-aminophenyl)-6,7,8,9-tetrahyd
rothieno[2,3-c]isoquinoline-2-carboxamide (8c) Yield: 
83%; m.p.: 295 °C. IR: 3416, 3325 (O–H,  NH2, NH); 2916 
(C–H,  sp3);1703 (C=O, acetyl); 1614 (C=N. 1H NMR: δ 
9.67 (s, 1H, NH), 7.93 (s, 2H,  NH2), 7.65 (d, J = 10 Hz, 2H, 
Ar–H), 7.35 (d, J = 10 Hz, 2H, Ar–H), 7.24 (d, J = 10 Hz, 
2H, Ar–H), 7.06(d, J = 10 Hz, 2H, Ar–H), 4.66 (s, 1H, OH), 
3.59 (d, J = 17 Hz, 1H,  C6H), 3.31 (d, 1H,  C9H), 3.03 (m, 
7H:  C7H and N(CH3)2), 2.83 (d, J = 10, 1H,  C9H), 2.14 
(s, 3H,  CH3, at C-5), 2.02 (s, 3H,  COCH3), 1.29(s, 3H, 
 CH3). 13C NMR: δ 165.34, 161.46, 158.98, 158.69, 158.39, 
158.09, 155.94, 153.55, 149.8, 147.95, 143.16,139.75, 
138.01, 129.51, 128.73, 128.36, 127.23, 123.26, 122.78, 
118.39, 116.64,114.33, 112.03, 96.85, 67.06, 66.14, 
44.02, 42.27,42,21, 31.12, 28.00, 24.48. Anal. Calcd. for 
 C30H31ClN4O3S (562.18): C, 63.99; H, 5.55; N, 9.95%. 
Found: C, 64.15; H, 5.49; N, 9.62%.

7-Acetyl-N-(4-acetylphenyl)-1-amino-5,8-dime-
thyl-8-hydroxy-6-(4-N,N-dimethylaminophenyl)-6,7,8
,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide 
(8d) Yield:89%; m.p.: 301–302 °C. IR: 3424 (O–H); 3320 
(N–H); 2916 (C–H,  sp3); 1705 (C=O, acetyl); 1681 (C=O, 
amide). 1H NMR: δ 9.71 (s, 1H, NH), 7.91 (m, 6H, Ar–H), 
7.17 (d, J = 10 Hz, 2H, Ar–H), 7.04 (s, 2H,  NH2), 4.63 (s, 
1H, OH), 3.60 (d, J = 8  Hz,1H,  C6H), 3.39 (d, J = 10  Hz, 
1H,  C9H), 3.02 (s, 6H, N(CH3)2), 2.84 (d, J = 10  Hz, 1H, 
 C7H), 2.53 (s, 4H:  C9H and  COCH3 attached to phenyl 
group and ovellaped with solvent protons), 2.17 (s, 3H, 
 CH3, at C-5), 2.03 (s, 3H,  COCH3), 1.30 (s, 3H,  CH3). 13C 
NMR: δ 202.91, 196.84,164.62, 159.00, 158.78, 158.70, 
158.40, 158.00, 156.21, 150.29,143.71, 142.98, 131.74, 
129.63, 129.37, 129.13,128.98, 123.01, 120.02,118.96, 
117.58, 116.64, 114.34, 112.03, 96.38, 67.33, 66.28, 43.46, 
42.72, 42.20, 31.13, 28.00, 26.43, 24.57. Anal. Calcd. for: 
 C32H34N4O4S: (570.23): C, 67.35; H, 6.00; N, 9.82%. Found: 
C, 67.51; H, 6.09; N, 9.74%.

7-Acetyl-1-amino-N-(naphthalen-1-yl)-5,8-dime-
thyl-8-hydroxy-6-(4-N,N-dimethylminophenyl)-6,7,8,
9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide 
(8e) Yield: 94%; m.p.: 288–290 °C. IR:3440, 3391 (O–H, 
 NH2, NH); 3050 (C–H,  sp2); 2910 (C–H,  sp3); 1702 (C=O, 

acetyl); 1633 (C=O, amide). 1H NMR: δ 9.69 (s, 1H, NH), 
7.51–7. 95 (m, 7H, Ar–H of 2-naphthyl group), 6.97 (br s, 
2H,  NH2), 6.78 (d, J = 15 Hz, 2H, Ar–H), 6.60 (d, J = 17 Hz, 
2H, Ar–H), 4.65 (s, 1H, OH), 4.50 (d, J = 16 Hz,1H,  C6H), 
3.55 (d, J = 17 Hz, 1H,  C9H), 3.38 (d, J = 13 Hz, 1H,  C7H), 
2.86 (d, J = 12  Hz, 7H:  C9H and N(CH3)2), 2.14 (s, 3H, 
 CH3, at C-5), 2.04 (s, 3H,  COCH3), 1.28 (s, 3H,  CH3). 13C 
NMR: δ 200.05, 165.03, 158.52, 156.05, 148.68, 141.88, 
133.34, 131.80, 129.92, 128.47, 125.87, 123.46, 112.45, 
67.23, 66.27, 42.63, 41.96, 31.4, 28.02, 24.63. Anal. Calcd 
for:  C34H34N4O3S (578.24): C, 70.56; H, 5.92; N, 9.68%. 
Found: C, 70.79; H, 5.79; N, 9.42%.

Method B
A mixture of 1 (3.95 g, 10 mmol), N-aryl-2-chloroaceta-
mide 2a–e (10 mmol) and anhydrous sodium carbonate 
(1.35 g) in ethanol (100 mL) was refluxed for three hours. 
The precipitate that formed on cooling was collected and 
recrystallized from dioxane as yellow crystals of 8a–e 
(94–98%).

Biological evaluation
In vitro cytotoxic activity
In vitro cytotoxic activity of all synthesized compounds 
against two human breast cell line (MCF7) and lung 
cell lines (A549) was evaluated according to the MTT 
method [23–25, 37, 38]. Firstly, Growth the cell line 
medium in 96 well tissue culture plate was injected with 
 105 cells/mL (100 uL/plate well) of the cell line and incu-
bated at 37 °C for 24 h to develop a monolayer sheet then 
the formed growth medium was poured from 96 well 
microtiter plates after the confluent sheet of cells. After 
that preparing the isoquinoline samples stock solutions 
in DMSO and diluted the concentrations to started from 
0.0487, 0.0975, 0.195, 0.391, 0.781, 1.562, 3.125, 6.25, 
12.50, 25.00  µM. Secondly, add 0.1  mL of each concen-
tration tetrahydroisoquinoline sample to each plate. 
The plates were incubated at 37  °C. Thirdly MTT solu-
tion (5 mg/mL in PBS) is prepared. Add 20 µL of MTT 
solution to each well plates. And shaking in 150 rpm for 
5 min, to mix the MTT into the media. Then incubate at 
(37 °C, 5%  CO2) for 1–5 h. Finally read the optical density 
at 560 nm and subtract background at 620 nm.

Cell cycle analysis
The cell cycle arrests of compound 7e against A549 
and compound 8d against MCF7 at their  IC50 values 
were carried out according to Abcam method (code 
ab139418), (www. abcam. co. jp). Thus, A549 and MCF7 
cells were collected and fixed with 75% ice-cold ethanol 
before being stored at − 20 °C for 1 h after being treated 
with an  IC50 dose of our compounds 7e, 8d. Then cen-
trifuged the cells and washed twice with ice-cold PBS, 

http://www.abcam.co.jp
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and incubated for 20 min at 4 °C. A cell cycle assay was 
used to assess the cell cycle (Propidium Iodide Flow 
Cytometry Kit [ab13941]. Then perform statistical anal-
ysis for the result by the Cell quest software on the cell 
fractions in sub-G0/G1, S, and G2/M phases [38].

Annexin‑V FITC apoptosis assay
The Annexin-V FITC apoptosis assay of compounds 
7e against A549 cell line and 8d against MCF7 cell 
line at their  IC50 values were carried out according to 
(BioVision) protocol (code k101-25). (www. biovi sion. 
com). Thus, cell line were treated with the  IC50 con-
centration of the compounds for 24 h then collected by 
trypsin, and centrifuged then rinsed with PBS and sus-
pended in 0.5  mL of binding buffer, then dual-stained 
with Annexin V-FITC (5 μL) and propidium iodide (5 
μL) in the dark for 15  min at RT. These stained cells 
were measured using flow cytometry with an excitation 
wavelength of 488  nm and an emission wavelength of 
530  nm. The results were then analyzed with the Cell 
quest software [39–41].

Molecular docking
Protein preparation The three-dimensional crystal 
structures of cyclin-dependent kinase 2 (CDK2, PDB 
ID 1AQ1) and dihydrofolate reductase (DHFR, PDB ID 
1BOZ) were obtained from the Protein Data Bank (PDB). 
The protein structures were prepared using AutoDock-
Tools 1.5.6. All water molecules were removed and hydro-
gen atoms were added. Gasteiger charges were assigned 
and nonpolar hydrogen were merged.

Ligand preparation The 3D structures of ligand 1 (7e 
compound) and ligand 2 (8d compound) were built and 
energetically minimized using Avogadro 1.2.0 with the 
MMFF94 force field. Ligand atom types were assigned 
and rotatable bonds were defined using AutoDockTools. 
Both ligands were converted to PDBQT format required 
for docking calculations.

Molecular docking Molecular docking studies were 
performed in (I Mole Lab for bioinformatics, Cairo, 
Egypt) by using AutoDock Vina 1.1.2. For each protein 
target, a docking grid box was generated to cover the 
active site based on a co-crystalized ligand. The exhaus-
tiveness parameter was set to 8. Docking was performed 
with the prepared proteins and ligands to generate 9 
binding poses per ligand. The best binding poses based 
on docking score were visually analyzed using Biovia 
Discovery Studio 2020 for interactions with key active 
site residues.

CDK2 inhibitors assay
The CDK2/cyclin A2 protein kinase assay was performed 
according to the bioscience protocol (code #79599) 
(www. bpsbi oscie nce. com).

Firstly, prepare the master mixture (6 μL of 5 × Kinase 
assay buffer 1 + 1 µL of ATP (500 µM) + 5 µL of 10 × CDK 
substrate peptide 1 + 13  μL of distilled water).then add 
25 μL of master mixture to every well of the 96-well plate. 
Add 20  ng of Cyclin A2 and 30  ng of different CDK2 
mutant protein into the wells as indicated along with 
0.155 µM of our synthesized compound 7e. Incubate at 
30  °C for 45  min. After the 45-min reaction, add 50 µL 
of Kinase-Glo Max reagent to each well. After that cover 
the plate with aluminum foil and incubate the plate for 
15  min at RT. Then Measure luminescence after sub-
tracted The value of blank from all readings using the 
microplate reader. The relative kinase activity of Cyclin 
A2/wild-type CDK2 group is set as 100%. The data was 
analysied and plot by Graphpad prism software [42, 43].

DHFR inhibitors assay
The DHFR inhibitors assay kit was performed according 
to abcam (code ab283374); (www. abcam. co. jp).

Firstly, Dilute 2 μL Dihydrofolate Reductase with798 μL 
DHFR Assay Buffer. Then add 98 μL of diluted Dihydro-
folate Reductase into desired well(s) containing the out 
synthesized 8d compound. Add 40 μL of diluted NADPH 
to each well containing the test samples. Incubate at 
room temperature for 10–15 min. Add 60 μL of diluted 
DHFR substrate to each well containing the test samples 
vortex briefly and keep on ice. Measure the absorbance 
immediately at 340  nm. Then calculate the inhibition 
concentration of 8d compound. The data was analyzed 
and plot by Graphpad prism software [44, 45].

Antioxidant activity
The antioxidant activity of ten compounds was deter-
mined using DPPH [32–34]. A solution 1: prepared by 
dissolving DPPH (0.002  g) in ethanol (50  mL etnanol). 
Solution 2: prepared by dissolving different weights 0.05, 
0.01 g of each sample in 1 mL of DMSO then take 10 µL 
of each sample solution with 1  mL ethanol. Then mix 
1 mL of solution 1 with 1 mL of solution 2 then vortex 
the resulting mixture in the dark for about 30 min. The 
absorbance of the mixture was measured by spectropho-
tometer at λmax = 517  nm against blank 1  mL absolute 
ethanol and compared to the ascorbic acid (Vitamin C).

Results and discussion
Synthesis
Refluxing of 2,4-diacetyl-5-hydroxy-5-methyl-
3-(4-(N,N-dimethylaminophenyl) cyclohexanone 

http://www.biovision.com
http://www.biovision.com
http://www.bpsbioscience.com
http://www.abcam.co.jp
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with 2-cyanothioacetamide in ethanol in the pres-
ence of piperidine as a basic catalyst resulted in regi-
oselective cyclocondensation reaction affording, 

7-acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-(N,N-
dimethylaminophenyl)-5,6,7,8-tetrahydroiso-quinoline-
3(2H)-thione (1) in 98% yield (Scheme 1).

Scheme 1 Synthesis of compounds 1,3–6,7a–e and 8a–e 
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Compound 1 underwent S-alkylation reactions 
upon treatment with some halo reagents namely; 
methyl iodide, ethyl chloroacetate, 2-chloroaceta-
mide, chloroacetonitrile or N-aryl-2-chloroacetamides 
2a–e in refluxing ethanol containing slightly excess 
molar amounts of sodium acetate trihydrate to give 
3-ethylthio-5,6,7,8-tetrahydroisoquinoline 3, ethyl 
(5,6,7,8-tetrahydroisoquinolin-3-ylthio)acetate 4, 
(5,6,7,8-tetrahydroisoquinolin-3-ylthio)acetamide 5, 
(5,6,7,8-tetrahydroisoquinolin-3-ylthio)acetonitrile 6 
and 2-[(7-acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-
(N,N-dimethylaminophenyl)-5,6,7,8-tetrahydroisoqui-
nolin-3-yl)thio]-N-arylacetamides 7a–e, respectively 
(Scheme 1).

On heating of compounds 7a–e with catalytic amounts 
of anhydrous sodium carbonate in abs. ethanol, they 
underwent intramolecular Thorpe-Ziegler cyclization 
affording 7-acetyl-1-amino-N-aryl-5,8-dimethyl-8-
hydroxy-6-(4-N,N-dimethylamino-phenyl)-6,7,8,9-
tetrahydrothieno[2,3-c]isoquinoline-2-carboxamides 
8a–e in nearly quantitative yield (Scheme 1). Compounds 
8a–e were also synthesized via reaction of 1 with the 
respective N-aryl-2-chloroacetamides 2a–e by heating 
in abs. ethanol in the presence of slightly excess molar 
amounts of anhydrous sodium carbonate (Scheme 1).

Characterization
The structures of all newly synthesized compounds were 
confirmed by FT-IR, 1H NMR and 13C NMR as well as 
elemental analyses (cf. Experimental part section and 
Additional file 1: Figs. S1–S45).

Anticancer activities
In vitro cytotoxicity
Our newly synthesized compounds 1, 3–6, 7a–e, and 
8a–e were studied for their in  vitro cytotoxic activities 
against two selective cell lines MCF7 and A549 (which 
our compounds show high activities towards them by 
using a way to drug predication program) by using the 
MTT assay method [36, 37]. In this work, doxorubicin 
was used as a positive control drug for comparison with 
the synthesized compounds under the same experimen-
tal conditions. Ten concentrations of each compound 
and doxorubicin ranging from 0.04875 to 25  μM were 
tested to reach the concentration which could cause 
death for 50% of the cancer cells (IC50). The cell viabil-
ity and toxicity percentage are given in supplementary 
data (Additional file 1: Tables S1–S6), and summarized in 
Table 1 and Fig. 1. These results indicated that all synthe-
sized compounds possess high cytotoxic activity against 
the two cell lines under investigation compared with that 
of doxorubicin, with  IC50 values ranging from 0.117 to 
3.800 μM (Table 1).

In more details on structure–activity relationship, 
we noticed that: (i) the cytotoxic activity of com-
pounds 1 and 3–6 against MCF7 cells obeys the order 
6 > 3 > 5 > 1 > 4, whereas that of the same compounds 
obeys approximately opposite order against A549 cells 
as 4 > 5 > 1 > 3 > 6; (ii) 4-substituted phenylcarbamoyl-
methylthio derivatives 7b–d exhibited stronger cytotoxic 
activity than the parent unsubstituted one 7a against 
both MCF7 and A549 cell lines; (iii) among the arylcar-
bamoylmethylthioisoquinolines 7a–e and arylcarbamoyl 
thienoisoquinolines 8a–e, naphalen-1-yl derivative 7e 
exhibited the highest cytotoxic activity against A549 cell 
line and 4-chlorophenyl derivative 8d showed the high-
est activity against MCF7 cell line, respectively. Moreo-
ver the toxicity of these two compounds against normal 
human fetal lung fibroblast WI-38 cell line were inves-
tigated in this study which show that 7e and 8d com-
pounds not toxic and safe for normal lung cell line with 
 IC50 19.7  µM, 23.3  µM respectively in comparison with 
Doxorubicin   IC50 11.43 µM (Table 2) the test details pre-
sented in Additional file 1: Table S6a.

By calculating the selectivity index of these compounds 
7e, 8d and Doxorubicin ((SI) =  IC50 of compound in non-
cancerous cell line (WI-38)\IC50 of compound in can-
cer cell (A549)). They show very high selectivity index 
SI = 127, 45, 52 respectively. therefore these compounds 
belong of a selected potential anticancer drugs.Cycliza-
tion of arylcarbomyl-methylthioisoquinolines 7a and 7c 
into the corresponding arylcarbomylthienoiso-quinolines 

Table 1 Cytotoxicity  (IC50) of compounds 1, 3–6, 7a–7e, 8a–e 
and doxorubicin as a standard against both MCF7, A549 cell 
lines

Compound no. MCF7 cell line A459 cell line
IC50 ± SD (µM) IC50 ± SD (µM)

1 1.857 ± 0.008 2.219 ± 0.002

3 0.562 ± 0.007 2.469 ± 0.006

4 3.074 ± 0.008 0.918 ± 0.002

5 0.924 ± 0.007 1.247 ± 0.002

6 0.329 ± 0.005 3.736 ± 0.002

7a 2.218 ± 0.004 1.586 ± 0.001

7b 0.474 ± 0.006 0.987 ± 0.002

7c 1.491 ± 0.004 0.496 ± 0.003

7d 0.495 ± 0.002 0.446 ± 0.004

7e 0.211 ± 0.002 0.155 ± 0.003

8a 0.872 ± 0.003 1.045 ± 0.006

8b 3.800 ± 0.008 0.527 ± 0.002

8c 0.215 ± 0.005 0.332 ± 0.002

8d 0.117 ± 0.004 0.515 ± 0.002

8e 0.461 ± 0.002 1.329 ± 0.004

Doxorubicin 0.053 ± 0.002 0.218 ± 0.005
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8a and 8c resulted in increasing the anticancer activity 
towards both MCF7 and A549 cell lines; (v) cyclization 
of tolylcarbomylmethylthioisoquinolines 7b into the cor-
responding tolylcarbomylthieno[2,3-c]isoquinolines 8b 
decreases the anticancer activity towards MCF7 cell line 
and (vi) cyclization of carbomylmethylthioisoquinolines 
7e into the corresponding carbomylthienoisoquinoline 
8e decreases the anticancer activity towards both MCF7 
and A549 cell lines (Fig. 1, and Table 1).

Cell cycle analysis in MCF7 and A549 Cells
The high cytotoxic activity of compound 7e against 
A549  (IC50 0.155  µM) and compound 8d against the 
MCF7 cell line  (IC50 0.170 µM) prompted us to further 

investigate the growth inhibitory mechanism of the 
target conjugates to study the mechanism of the cell 
cycle by using flow cytometric analysis [46–48]. Both 

Fig. 1 Anticancer activity of synthesized compounds compared with Doxorubicin as a standard at different concentrations from 0.048 to 25 μM. 
a‑ Compounds 1 and 3–6. b‑ Compounds 7a–7e. c- Compounds 8a–8e against MCF7 cell line respectively. d -Compounds 1 and 3–6. e 
-Compounds 7a–7e.f -Compounds 8a–8e against the A549 cell line respectively

Table 2 Cytotoxicity  (IC50) of compounds 7e and 8d and 
Doxorubicin against normal cell line WI‑38 cell line

Code Toxicity on WI38 IC50 
µM ± SD

Selectivity 
index (SI)

7e 19.734 ± 0.79 127.29

8d 23.301 ± 0.93 45.24

Doxorubicin 11.433 ± 0.37 52.4

Fig. 2 Cell cycle analysis of A549 and MCF7 cells treated 
with compounds 7e and 8d 
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regulation of cell cycle progression and apoptosis 
induction have been considered significant strategies 
to control the proliferation of different cancer cells, 
accordingly, we primarily examined the growth inhibi-
tion mechanism of compounds 7e and 8d in relation 
to cell cycle progression and regulation in A549 and 
MCF7 cancer cells, respectively (Fig. 2, and Table 3).

The impact on cell cycle distribution was assessed by 
a DNA flow cytometry analysis, through incubation 
of A549 cells with compound 7e at its  IC50 concentra-
tion  (IC50 0.155 µM) and incubation of MCF7 cells with 
compound 8d at its  IC50 concentration  (IC50 0.170 µM) 
for 48 h (Fig. 2). From the obtained results, it was found 
that: (i) A549 cells exposed to compound 7e signifi-
cantly arrested at the G2/M phase of the cell cycle with 
an escalation in G2/M phase fraction from 11.60 (in 
control cells) to 23.61% (in 7e-treated A549 cells) and 
(ii) MCF7 cells treated with compound 8d had a signifi-
cant decrease in G0-G1 and G2/M phases than control 
cells in contrast (iii) S phase was significantly increased 
in treated cells as an indication of cell cycle arrest; i.e. 
increased from 29.81 (control) to 37.92 (8d-treated cells). 
The antiproliferative mechanism of our compounds was 
explored from the aforementioned obtained result; com-
pounds of type 7e compound arrested the cell cycle at 
G2/M phase of the cell cycle whereas compounds of type 
8d compound arrested the cell cycle at S phase (Fig. 2).

Apoptosis assay in A549 and MCF7 cell lines
To further investigate whether the anti-proliferative 
activity for compound 7e or 8d is harmonious with the 
apoptosis induction [47–50] within A549 or MCF7 cells 
pointed out by the increased cell population in G2/M 
phase in 7e-treated A549 cells and S phase in 8d-treated 
MCF7 cells, respectively, and AnnexinV-FITC/PI dual 
staining analysis was used for the apoptosis assay (Fig. 3).

The results of the Annexin V-FITC/PI assay sug-
gested that: (i) treatment of A549 cells with compound 
7e led to early and late cellular apoptosis, which proved 
through the significant increase the percentage of the 
apoptotic cells in both the early apoptotic phase (from 
0.36 to 26.85%) and the late apoptotic phase (from 0.18 

to 15.61%) that indicates a high increase in total apopto-
sis when compared to the untreated control (Fig. 3a, b), 
(ii) compound 8d caused a considerable increase in early 
and late apoptosis of MCF7 cells than control cells; i.e. 
the early and late apoptotic population increased from 
0.55 to 22.38% and from 0.27 to 26.96%, respectively 
(Fig. 3c, d), and (iii) treating A549 cells with compound 
7e increases the population of necrotic cell from 1.41 
(control) to 3.73% keeping the necrosis minimally con-
tributing. Also, the population of necrotic cells increases 
from 1.89 (control) to 5.04% upon the subjection of the 
MCF7 cells to compound 8d (Fig.  4). From the above 
results, an overall 79-fold increase in A549 cellular apop-
tosis after treatment with compounds 7e and 69-fold 
increase in MCF7 cellular apoptosis after treatment with 
8d compound In comparison to the control. We observed 
that our targeted substances, 7e and 8d, have the poten-
tial to function as a biological mechanism for inhibiting 
cell growth, thus leading to cytotoxic effects against the 
MCF7 and A549 cell line (Fig. 4).

Molecular docking
The docking studies revealed that compound 7e had 
stronger binding affinity (− 10.3  kcal/mol) to CDK2 
compared to the standard STU299 (− 11.5  kcal/mol). 
The interactions analysis showed that 7e formed hydro-
gen bonds, amid pi-sulfate, alkyl, pi-alkyl, and pi-sigma 
interactions with key amino acid residues in the CDK2 
binding site like GLU 12, VAL 18, LYS 33, and LEU 134 
(Table  4, Fig.  5). In contrast, STU299 showed hydrogen 
bonds, C–H bonds, alkyl, pi-alkyl, and pi-sigma interac-
tions with residues like GLY 13, GLN 131, LEU 134, VAL 
18, ILE 10. The additional pi-sulfate and amid interac-
tions of 7e with GLU 12 likely contribute to its better 
binding over STU299.

For DHFR, compound 8d had a stronger binding affin-
ity (− 9.5 kcal/mol) than the standard PRD400 (− 8.5 kcal/
mol). The interactions analysis revealed 8d forms hydro-
gen bonds, C–H bonds, alkyl, and pi-sigma interactions 
with key residues like VAL 115, GLN 35, PHE 34 in the 
DHFR binding site (Table 5, Fig. 6). Meanwhile, PRD400 
showed hydrogen bonds, C–H bonds, alkyl, and pi-alkyl 
interactions with residues such as LYS 55, ALA 9, ILE 
16, SER 59, GLY 117, ILE 7, PHE 34. The extra pi-sigma 
interaction of 8d with PHE 34 may enhance its binding 
over PRD400.

Overall, the docking results indicate compounds 7e 
and 8d bind more strongly to CDK2 and DHFR respec-
tively compared to the standard inhibitors. The addi-
tional interactions formed by 7e and 8d with key active 
site residues likely contribute to their enhanced binding 
affinity.

Table 3 Cell cycle analysis of A549 and MCF7 cells treated with 
compounds 7e and 8d 

Sample code DNA content

%G0‑G1 %S %G2/M

8d/MCF7 52.03 37.92 10.05

Cont. MCF7 56.42 29.81 13.77

7e/A549 52.83 23.56 23.61

Cont. A549 63.29 25.11 11.6
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Enzyme inhibitory activities
The promising anti-proliferative impact of compounds 7e 
and 8d, in addition to their cell cycle disruption and pro-
apoptotic effects, proved a further exploration for their 
possible inhibitory activities against many enzymes such 

as RET (encodes a receptor tyrosine kinase) and CDK2 
(Cyclin-dependent kinase 2) treated with compound 
7e, and DHFR (Dihydrofolate reeducates), Eef2 Kinase 
(Eukaryotic elongation factor 2kinase)and IKB kinase 
(inhibitory kappa B kinase) treated with compound 8d.

Fig. 3  Apoptosis results of compounds 7e and 8d on  A549 and MCF7 cell lines respectively. a. Control A549  b. Compd. 7e \A549 
and c. MCF7 control. d. Compd. 8d\MCF7 
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Inhibitory activity of compound 7e towards CDK2 Com-
pound 7e showed significant CDK2 cyclin A inhibitory 
activity in comparison with the reference; Roscovitine 
Table  6. Due to the nature of isoquinoline moiety [51, 
52]. From the docking study the inhibition mechanism of 
compound 7e with interaction with CDK2 with hydrogen 
bonding and other bonds; they may deactivate the binding 
site in CDK2 and either its partners or substrates result-
ing in specific inhibition of CDK2. The obtained results in 
Table 6 and Fig. 7a and for more enzyme inhibition test 
details presented in supplementary data (Additional file 1: 
Table S7) showed that the tested compound 7e exhibited 
significant inhibitory action against CDK2 with  IC50 value 
0.149 ± 0.007 in comparison with the control; Roscovi-
tine which showed  IC50 of 0.380 ± 0.008 µM (reference of 
CDK2 inhibitor).

DHFR inhibitory activity of compound 8d Our results 
obtained indicated that compound 8d which contains 
tetrahydrothieno[2,3-c]isoquinoline [14, 53, 54] moiety 
showed high inhibitory activity towards DHFR enzyme 
in comparison with the reference; methotrexate show 

Table  7, Fig.  7b and for more enzyme inhibition test 
details was presented in supplementary data (Addi-
tional file  1: Table  S8). Thus, compound 8d exhibited 
good inhibitory activity towards DHFR with  IC50 value 
0.199 ± 0.016 in comparison with that Methotrexate 
 (IC50 of 0.131 ± 0.007).

Other enzyme inhibitory activity Compounds7e and 
8d exhibited moderate inhibitory activity towards other 
enzymes under investigation in comparison with their 
control for more enzyme inhibition test details show 
Additional file  1 (Table  8 and Additional file  1: Tables 
S9–S11).

In vitro antioxidant behavior
Ten newly synthesized compounds were studied as 
in  vitro antioxidants by measuring of their DPPH 
scavenging activity which is represented as a percent-
age % [32]. Results are represented by mean ± SD of 
three replicates. Table  9 showed the percentage of 
DPPH scavenging activity of the tested compounds in 
a dose-dependent relationship compared with Vitamin 
C (ascorbic acid) as a standard. The higher dose con-
centration of 0.05 μg/mL represents higher antioxidant 
activity. Compounds 1, 3, 6, 7c and 8e have higher 
result than Vitamin C itself. Compound 8e show the 
highest significant result which suggests that this com-
pound can be used as excellent antioxidant drugs. The 
high antioxidant activity is referred to the presence of 
C=O,  NH2, and OH groups like ascorbic acid [55, 56] 
which can be easily oxidized and reduced and can be 
used as antioxidant drugs. (Fig. 8 and Table 9).

Conclusion
In this paper, We successfully synthesized and 
characterized of novel two series of substituted 
methylthiotetrahydroisoquniolines and related 
tetrahydrothieno[2,3-c]isoquinolines. All synthesized 
compounds were evaluated for their anticancer activity 
towards A549 and MCF7 cell lines, and showed prom-
ising results. Moreover, the cell cycle arrest and apop-
tosis induction of the two representative compounds 
was studied. Compound 7e caused cell cycle arrest of 
A549 cell line at G2/M phase and compound 8d arrest 
the cell cycle of MCF7 cell line at S phase. Compounds 
7e and 8d compounds caused high increase in the 
early and late apoptosis and necrosis. Furthermore, 
compound 7e showed significant inhibition of CDK2 
enzyme while compound 8d exhibited significant 
activity as a DHFR inhibitors. In the future we intend 
to synthesis new series of tetrahydrothieno[2,3-c]iso-
quinolines to studied their anticancer activity not only 

Fig. 4 Apoptosis/necrosis assessment of A549 and MCF7 
cells after treatment with compounds 7e against A549 
and 8d against MCF7. Different cell populations were plotted 
as a percentage of total events. Data are presented as mean ± SD; 
n = 3

Table 4 ∆G and binding affinity (Kcal/mol) for CDK2 docking 
interaction with compound 7e in comparison its standard stu299

Compound ∆G and binding 
affinity (Kcal/
mol)

7e  − 10.3

STU299  − 11.5
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Fig. 5 3D and 2D docking interaction of compound 7e with CDK2 in compered to the slandered STU299

Table 5 ∆G and binding affinity (Kcal/mol) for DHFR docking with 8d with its standard PRD400

Compound ∆G and binding affinity (Kcal/mol)

8d  − 9.5

PRD400  − 8.5
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Fig. 6 3D and 2D docking interaction of compound 8d with DHFR in compered to the slandered PRD400
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Table 6 CDK2 inhibitory activity of compound 7e 

Compd. no. M.W. (g/mol) CDK2 inhibition  (IC50 ± SD; µM)

7e 578 0.149 ± 0.007

Roscovitine 354.5 0.380 ± 0.008

Fig. 7 a‑  CDK2 inhibitory activity of compound 7e. b‑ DHFR inhibitory activity of compound 8d.

Table 7 DHFR inhibitory activity of the compound 8d 

Compd. no. M.W. (g/mol) DHFR inhibition  (IC50 ± SD; µM)

8d 670 0.199 ± 0.016

Methotrexate 454.44 0.131 ± 0.007

Table 8 Enzyme inhibitory activity of compounds 7e and 8d 

RET tyrosine kinase (IC50 ± SD; µM) Eef2 kinase (IC50 ± SD; µM) IKB kinase B (IC50 ± SD; µM)

Compound 7e Control (staurosporine) Compound 8d Control (NH125) Compound 8d Control (TPCA‑1)

0.106 ± 0.005 0.069 ± 0.003 0.689 ± 0.036 0.357 ± 0.0190 0.240 ± 0.013 0.072 ± 0.004
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in  vitro but also in  vivo and examined the antican-
cer activity of these compounds in patient samples as 
potent anticancer drugs.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13065- 024- 01139-w.

Additional file 1: Fig. S1. FT-IR spectrum of Compound 1. Fig. S2. 1H 
NMR spectrum of Compound 1. Fig. S3. 13C NMR spectrum of compound 
1. Fig. S4. FT-IR spectrum of compound 3. Fig. S5. 1H NMR spectrum of 
compound 3. Fig. S6. 13C NMR spectrum of compound 3. Fig. S7. FT-IR 
spectrum of compound 4. Fig. S8. 1H NMR spectrum of compound 4. 
Fig. S9. 13C NMR spectrum of compound 4. Fig. S10. FT-IR spectrum of 
compound 5. Fig. S11. 1H NMR spectrum of compound 5. Fig. S12. 13C 
NMR spectrum of compound 5. Fig. S13. FT-IR spectrum of compound 6. 
Fig. S14. 1H NMR spectrum of compound 6. Fig. S15. 13C NMR spectrum 
of compound 6. Fig. S16. FT-IR spectrum of compound 7a. Fig. S17. 1H 
NMR spectrum of compound 7a. Fig. S18. 13C NMR spectrum of com-
pound 7a. Fig. S19. FT-IR spectrum of compound 7b. Fig. S20. 1H NMR 
spectrum of compound 7b. Fig. S21. 13C NMR spectrum of compound 
7b. Fig. S22. FT-IR spectrum of compound 7c. Fig. S23. 1H NMR spectrum 
of compound 7c. Fig. S24. 13C NMR spectrum of compound 7c. Fig. S25. 
FT-IR spectrum of compound 7d. Fig. S26. 1H NMR spectrum of com-
pound 7d. Fig. S27. 13C NMR spectrum of compound 7d. Fig. S28. FT-IR 
spectrum of compound 7e. Fig. S29. 1H NMR spectrum of compound 7e. 
Fig. S30. 13C NMR spectrum of compound 7e. Fig. S31. FT-IR spectrum of 
compound 8a. Fig. S32. 1H NMR spectrum of compound 8a. Fig. S33. 13C 

Fig. 8 Antioxidant activity of compounds 1, 3, 6, 7a, 7b, 7c, 7d, 7e, 8a and 8e 

Table 9 DPPH Scavenging activity of 
5,6,7,8-tetrahydrothieno[2,3-c]isoquinolines 1, 3, 6 and 7a–e, and 
6,7,8,9-tetrahydrothieno[2,3-c]isoquinolines 8a, b 

*These data are represented by Mean ± SD. DPPH scavenging activity 
represented as %. Statistical analysis is carried out using two-way ANOVA 
coupled with a CO-state computer. The ascorbic acid standard was used as 
a positive control. DPPH scavenging activity was calculated as follows: % 
Inhibition = 100 − [Absorbance of the test compound/Absorbance of the 
control] × 100

The important of the information in the asterisk : to inform the software 
(ANOVA) used in this study and the equation used for calculation the results

Compound no. 0.01 µg/mL inhibition 
(%)

0.05 µg/mL 
inhibition (%)

1 61.01 ± 0.58 92.3 ± 0.44

3 25.58 ± 2.20 81.39 ± 3.87

6 69.67 ± 5.65 83.72 ± 4.08

7a 43.26 ± 0.73 62.96 ± 0.73

7b 48.59 ± 0.73 52.19 ± 0.58

7c 77.90 ± 6.22 81.39 ± 4.99

7d 48.08 ± 0.87 69.73 ± 0.73

7e 44.28 ± 0.44 47.36 ± 0.44

8a 14.22 ± 1.32 23.66 ± 2.12

8e 80.45 ± 5.22 89.67 ± 4.76

Vitamin C 50.54 ± 2.76 69.90 ± 3.98

https://doi.org/10.1186/s13065-024-01139-w
https://doi.org/10.1186/s13065-024-01139-w


Page 18 of 19Sayed et al. BMC Chemistry           (2024) 18:34 

NMR spectrum of compound 8a. Fig. S34. FT-IR spectrum of compound 
8b. Fig. S35. 1H NMR spectrum of compound 8b. Fig. S36. 13C NMR 
spectrum of compound 8b. Fig. S37. FT-IR spectrum of compound 8c. 
Fig. S38. 1H NMR spectrum of compound 8c. Fig. S39. 13C NMR spectrum 
of compound 8c. Fig. S40. FT-IR spectrum compound 8d. Fig. S41. 1H 
NMR spectrum compound 8d. Fig. S42. 13C NMR spectrum of compound 
8d. Fig. S43. FT-IR spectrum compound 8e. Fig. S44. 1H NMR spectrum 
compound 8e. Fig. S45. 13C NMR spectrum of compound 8e. Table S1. 
Raw date of toxicity and viability of compounds 1,3–6 against MCF7. 
Table S2. Raw date of toxicity and viability of compounds 7a–e against 
MCF7. Table S3. Raw date of toxicity and viability of compounds 8a–e 
against MCF7. Table S4. Raw date of toxicity and viability of compounds 
1,3–6 against A549. Table S5. Raw date of toxicity and viability of com-
pounds 7a–e against A549. Table S6. Raw date of toxicity and viability of 
compounds 8a–e against A549. Table S7. CDK2 inhibitor detailed results. 
Table S8. DHFR inhibitor detailed results. Table S9. Eef2 inhibitor detailed 
results. Table S10. IKB inhibitor detailed results. Table S11. RET inhibitor 
detailed results.
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