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Abstract 

VEGFR2 and FAK signaling pathways are interconnected and have synergistic effects on tumor angiogenesis, growth, 
and metastasis. Thus, instead of the conventional targeting of each of these proteins individually with a specific 
inhibitor, the present work aimed to discover novel dual inhibitors targeting both VEGFR2 and FAK exploiting 
their association. To this end, receptor-based pharmacophore modeling technique was opted to generate 3D 
pharmacophore models for VEGFR2 and FAK type II kinase inhibitors. The generated pharmacophore models were 
validated by assessing their ability to discriminate between active and decoy compounds in a pre-compiled test set 
of VEGFR2 and FAK active compounds and decoys. ZINCPharmer web tool was then used to screen the ZINC database 
purchasable subset using the validated pharmacophore models retrieving 42,616 hits for VEGFR2 and 28,475 
hits for FAK. Subsequently, they were filtered using various filters leaving 13,023 and 6,832 survived compounds 
for VEGFR2 and FAK, respectively, with 124 common compounds. Based on molecular docking simulations, 
thirteen compounds were found to satisfy all necessary interactions with VEGFR2 and FAK kinase domains. Thus, 
they are predicted to have a possible dual VEGFR2/FAK inhibitory activity. Finally, SwissADME web tool showed 
that compound ZINC09875266 is not only promising in terms of binding pattern to our target kinases, but also in 
terms of pharmacokinetic properties.

Keywords Pharmacophore modelling, Virtual screening, Molecular docking, Cancer, FAK, VEGFR2, Angiogenesis, 
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Introduction
Research on anticancer agents began in the twentieth 
century, yet the development of efficient, safe, and 
selective anticancer agents remains a research hotspot 
[1]. Conventional chemotherapeutic agents cause 
unfavorable side effects due to their lack of selectivity 
towards cancer cells over normal cells. On the other 
hand, targeted therapies, such as anti-angiogenic agents, 
show a higher selectivity towards cancer cells or their 
supporting microenvironment, thus, with minimum side 
effects on normal cells [2].
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Angiogenesis, which involves the formation of 
new blood vessels from pre-existing ones, is a key 
biological process involved in many physiological as 
well as pathological conditions [3, 4]. Physiologically, 
angiogenesis is important for the development of 
embryos, menstruation, and wound healing, however, it 
is also an integral part of several diseases such as cancer 
[5, 6]. The process of solid tumor growth inevitably 
involves angiogenesis as a means for delivering oxygen 
and nutrients to the continuously growing tumor cells 
[7]. This process is vital for the growing of primary 
tumors beyond the size of 1–2   mm3, as well as for their 
spread and metastasis [8]. Thus, angiogenesis induction 
represents one of the key cancer hallmarks that are shared 
by all types of cancer [9, 10]. Angiogenesis is tightly 
regulated through the balance between stimulatory 
(proangiogenic) and inhibitory (antiangiogenic) signals, a 
phenomenon known as the angiogenic switch [11]. This 
switch is considered “on” when the proangiogenic signals 
overpower those of the antiangiogenic signals [12].

Cancer treatment strategies based on targeting tumor 
angiogenesis demonstrated a great potential in curbing 
tumor growth and metastasis which is one of the biggest 
contributing factors to mortality in cancer patients [13, 
14]. The benefit of anti-angiogenic agents in cancer 
patients’ survival is still under investigation; however, it 
has been demonstrated in several clinical trials that the 
combination of anti-angiogenic agents with a cytotoxic 
chemotherapy led to an increase in patients’ overall 
survival (OS) and progression free survival (PFS) [15].

Protein kinases (PKs) are critical mediators and 
coordinators of several cellular signaling pathways 
involved in cell proliferation, differentiation, migration, 
survival, and apoptosis [16]. There are two major classes 
of PKs; protein tyrosine kinases (PTK), and serine/
threonine kinases (STK), phosphorylating tyrosine 
residues and serine/threonine residues, respectively, in 
the substrate proteins [17–20]. PTKs are further divided 
into two subfamilies, receptor tyrosine kinases (RTK) 
such as vascular endothelial growth factor receptor 
(VEGFR) and non-receptor tyrosine kinases (NRTK) 
such as focal adhesion kinase (FAK) [21, 22].

PTKs play an important role in the process of 
angiogenesis. In the context of oncology, several 
PTKs directly regulate tumor angiogenesis including 
fibroblast growth factor receptor (FGFR), platelet-
derived growth factor receptor (PDGFR), and vascular 
endothelial growth factor receptor (VEGFR) which 
has three isoforms; VEGFR-1 (Flt-1), VEGFR2 (KDR), 
and VEGFR-3 (Flt-4) [23]. In vascular endothelial cells, 
VEGFR2 is the major signaling VEGFR and it plays a 
significant role in the process of tumor angiogenesis 
[24–26]. Moreover, VEGFR2 overexpression has been 

reported in a variety of cancers such as esophageal, oral, 
ovarian, and prostate cancer [27, 28].

Focal adhesion kinase (FAK) is a NRTK that has a key 
role in angiogenesis as it regulates endothelial cells and 
fibroblasts migration and invasion which is an integral 
part of angiogenesis [29]. FAK overexpression can be 
traced to many pathological conditions, especially cancer 
[30]. It is overexpressed in several cancer types such 
as head and neck [31], oral [32], thyroid [33], cervical 
[34], ovarian [35], breast [36], colon [36], and prostate 
cancer [37]. Besides its direct effect on angiogenesis, 
FAK increased expression in cancer cells plays a key role 
in the tumor angiogenic switch promoting aggressive 
tumor progression and metastasis [38]. Moreover, FAK 
inhibitors were found to suppress tumor growth and 
tumor vascular formation in animal models [39].

Several studies reported the association between 
VEGFR2 and FAK [29, 39–43]. FAK is stimulated by 
several angiogenic growth factor receptors including 
VEGFR2 when stimulated by VEGF-A [29, 40]. 
Moreover, FAK forms an integrin αvβ5 signaling complex 
in a Src-dependent manner which is essential for VEGF 
stimulated angiogenesis [41, 42]. Furthermore, VEGFR2 
and FAK were found to be positively correlated in 
patients with triple negative breast cancer (TNBC), 
in addition, FAK promotes angiogenesis in TNBC 
cells through regulating VEGFR2 and VEGF protein 
expression [39]. Furthermore, inhibition of FAK 
expression in neuroblastoma, breast, and prostate 
carcinoma cells results in reduced VEGF expression [43].

Protein kinase inhibition can be achieved by different 
types of inhibitors, such as small molecule inhibitors and 
monoclonal antibodies [2]. There are several types of 
small molecule PK inhibitors (I–VI) based on the nature 
of the inhibitor and its binding interactions, the site of 
ligand binding, and the conformation of the PK-ligand 
complex formed [44]. Type II ATP-competitive inhibitors 
bind to the DFG-out inactive kinase conformation 
occupying the hinge region (Front pocket) and extend 
through the gate area towards the hydrophobic allosteric 
back pocket [45, 46]. They have proven to be better drug 
candidates and more advantageous over those of type 
I as they have higher affinity and selectivity [46, 47]. 
Moreover, they possess slower dissociation rates (≈10 
times slower) and so longer residence time leading to 
longer suppression of kinase activity [48, 49].

Multi-kinase inhibitors supersede single kinase inhibi-
tors in many aspects. For starters, as they inhibit two 
or more proteins, they have a resultant synergistic 
effect, which in turn results in a greater potency [50]. 
They also show enhanced pharmacokinetic character-
istics and a reduced risk of developing resistance [51]. 
There are already a few multi-kinase inhibitors that have 
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received FDA approval such Lenvatinib (I) which inhibits 
VEGFR1, VEGFR2, and VEGFR3, and Cabozantinib (II) 
which inhibits c-Met and VEGFR2 (Fig. 1) [52].

Throughout the past years, considerable progress has 
been made in the discovery of protein kinase inhibitors, 
and this goes back to the use of computational methods 
[53, 54]. The two main approaches of computer-aided 
drug design (CADD), ligand-based drug design (LBDD) 
and structure-based drug design (SBDD), provide valu-
able tools for studying the different protein kinase 
structures and designing kinase inhibitors [53–55]. For 
example, LBDD represented by 3D QSAR pharmacoph-
ore model for VEGFR2 inhibitors was used to virtually 
screen different databases for novel hits resulting in the 
discovery of the 6,7-dihydro-5H-cyclopenta[d]pyrimi-
dine derivative (III) (Fig.  2) as a promising VEGFR2 

inhibitor with  IC50 of 0.85 µM [56]. Moreover, ligand-
based pharmacophore model for FAK inhibitors was 
used to virtually screen ZINC database identifying com-
pound (IV) (Fig. 2) as a potential hit [57]. On the other 
hand, the discovery of the clinically approved VEGFR2 
inhibitor, pazopanib (V) (Fig. 2), is an example of the use 
of homology modeling and SBDD for the design of kinase 
inhibitors [58, 59].

As pointed out earlier, VEGFR2 and FAK signaling 
pathways are interconnected and have synergistic 
effects on angiogenesis, tumor growth, and metastasis 
[29, 39–43]. Thus, instead of targeting each of these 
proteins individually with a specific inhibitor, the 
present work aims to discover novel type II dual 
inhibitors simultaneously targeting VEGFR2 and 
FAK exploiting their association. This approach 

Fig. 1 Examples for FDA approved multi-kinase inhibitors

Fig. 2 Examples for kinase inhibitors discovered using CADD approaches
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could provide a more comprehensive targeting of 
angiogenesis, tumor progression and metastasis 
which could lead to improved treatment outcomes. In 
addition, it could be a possible strategy to overcome 
resistance mechanisms that arise from single-target 
inhibition. The simultaneous targeting of multiple 
pathways can make it more difficult for cancer cells to 
develop resistance mechanisms, potentially prolonging 
the effectiveness of the therapy.

To this end, a training set of VEGFR2 and FAK 
protein structures bound to type II inhibitors retrieved 
from the Protein Data Bank (PDB) (https:// www. rcsb. 
org) will be used. Receptor-based pharmacophore 
models will then be manually generated based 
on the common interactions extracted from the 
co-crystalized inhibitors in each protein. The 
generated pharmacophore models for each kinase 
will be filtered and validated utilizing compiled test 
sets of VEGFR2/FAK inhibitors and decoys. The 
pharmacophore model survives the filtration and 
validation step for each protein will be then used to 
screen the ZINC purchasable database. Hits recovered 
from the virtual screening will be filtered to keep 
only promising lead-like compounds with acceptable 
pharmacokinetic properties. Common molecules 
survive the filtration step in both proteins will be 
then subjected to molecular docking simulations. 
Molecules’ docking poses will be then evaluated to 

extract molecules that bind in both proteins’ kinase 
domains performing the essential interactions.

Results and discussion
Protein structure similarity assessment
To assess the rationale of our novel strategy and the 
potential of finding dual inhibitors, the similarity of 
VEGFR2 and FAK kinase domains in sequence, topology, 
and structure was initially investigated. VEGFR2 
and FAK kinase domain amino acid sequences were 
obtained in FASTA format from the Protein Data Bank 
(VEGFR2-PDB-ID: 4ASD [60] and FAK-PDB-ID: 4K9Y 
[61]) (https:// www. rcsb. org). Then, NCBI Basic Local 
Alignment Search Tool for proteins (BLASTp) (https:// 
blast. ncbi. nlm. nih. gov/ Blast. cgi) was used to align and 
assess the similarity between the amino acid sequences 
using VEGFR2 kinase domain sequence as the query and 
FAK kinase domain sequence as the subject.

Upon sequence alignment, a promising sequence 
similarity of 34% was found (Fig.  3), moreover, the per-
centage of positives was 54%, indicating a great portion 
of sequence differences was due to conservative sub-
stitutions, with the replaced amino acids having side 
chains with similar nature. Furthermore, the amino acid 
residues involved in type II kinase inhibition binding 
pattern were found to align, these include hinge region 
cysteine, αC helix glutamic acid, and the DFG loop aspar-
tic acid (Figs. 3 and 4).

Furthermore, VEGFR2 and FAK crystal structures 
(PDB ID: 4ASD [60] and PDB ID: 4K9Y [61], respec-
tively) were downloaded from the protein data bank 

Fig. 3 VEGFR2 (Query) and FAK (Subject) kinase domains amino acid sequence alignment using BLASTp (Aligned residues involved in type II kinase 
inhibition binding pattern are highlighted)

https://www.rcsb.org
https://www.rcsb.org
https://www.rcsb.org
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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(PDB) (https:// www. rcsb. org/). Then, they were aligned, 
and their overlay was investigated, especially, the ATP-
binding site and its key amino acids. As can be seen in 
Fig.  5, the obtained alignment shows that the protein 
structures are well aligned with the proteins’ hydropho-
bic and polar regions superimposed, in particular, the key 
residues at the ATP-binding site. The key binding resi-
dues are not only showing high similarity in their posi-
tion within the binding pocket in 3D space but also in 
their type and nature. The hinge region residue, Cys919 

in VEGFR2 aligns with Cys502 in FAK, the αC helix 
Glu885 in VEGFR2 and Glu471 in FAK are also found 
to converge in 3D space, and the DFG loop Asp1046 in 
VEGFR2 aligns with Asp564 in FAK. Thus, it is evident 
that the key regions for inhibitor design represented by 
the hinge region, the gate area, and the hydrophobic back 
pocket show high topological and residue similarity.

These results indicate that VEGFR2 and FAK are 
not only related to cancer angiogenesis, growth, and 
metastasis but also with similar kinase domains in 

Fig. 4 Key structural features of type II kinase inhibitors

Fig. 5. 3D superimposition of VEGFR2 (PDB ID: 4ASD) and FAK (PDB ID: 4K9Y) protein structures with a close focus on the key residues at the ATP 
binding site (Hydrophobic region: grey; Polar regions: red)

https://www.rcsb.org/


Page 6 of 20Fouad et al. BMC Chemistry           (2024) 18:29 

sequence, topology, and structure and so the possibility 
of finding inhibitors that can target both kinase domains 
simultaneously (Dual inhibitors) is an amenable task.

Retrieving X‑ray crystallographic structures and training 
set generation
The active site of protein kinases could be divided into 
three sub-regions: the hinge region (Front pocket), 
the gate area and the hydrophobic allosteric back 
pocket. The hinge region is a flexible coil, which resides 
between the N-terminal and the C-terminal lobes. The 
hydrophobic allosteric back pocket is exposed in the 
DFG-out conformation [62]. To accomplish type-II-like 
dual inhibition, the inhibitors should retain hydrogen-
bonding interactions with the hinge region, gate area, 
and hydrophobic interactions with the hydrophobic back 
pocket in both VEGFR2 and FAK kinase domains [63].

In the current work, for dual VEGFR2/FAK type II 
inhibitor design, inhibitors need to perform the crucial 
hydrogen bond interactions with the VEGFR2 Cys919 
and FAK Cys502 residues at the hinge region [44, 64, 
65]. Additionally, several interactions via hydrogen 
bonds with VEGFR2 Asp1046 and FAK Asp564 of the 
conserved DFG motif as well as VEGFR2 Glu885 and 
FAK Glu471 of αC helix at the interface between gate 
area and the hydrophobic back pocket, and finally they 
should extend beyond the gate area to interact through 
hydrophobic interaction with the allosteric back pocket 
exposed in DFG-out conformation [25, 61, 64, 65]. 
Commonly, additional interactions with other residues 
at the binding site would strengthen the binding affinity 
[66].

Ten X-ray crystallographic structures of VEGFR2 
(8) and FAK (2) co-crystallized with different type II 
inhibitors (VEGFR2-PDB ID: 4ASE, 4ASD, 2QU6, 3VHE, 
3EWH, 3VNT, 3WZD, and 6XVK; FAK-PDB ID: 4KAO 
and 4K9Y) [47, 60, 61, 67–71] were downloaded from 
the Protein Data Bank (https:// www. rcsb. org/) (Tables 1 
and 2). Structural diversity was kept in mind while 
constructing our training set, moreover, it was ensured 
that all compounds included in our training set were able 
to perform all the essential interactions with the font 
cleft, gate area, and hydrophobic back pocket (Tables  1 
and 2). For further details about training set compounds, 
see Additional file  1; S1. Training set compounds for 
VEGFR2 and FAK pharmacophore model generation.

Pharmacophore model generation
3D pharmacophore models are commonly used as 
a virtual screening tool to obtain a more concise list 
of hits with a considerable complementarity to the 
desired targets. In the current work, receptor-based 

pharmacophore modeling was adopted to generate 
several pharmacophore models for the inhibitors of 
each protein kinase. The retrieved and prepared protein 
structures co-crystallized with various inhibitors for 
each protein kinase VEGFR2 and FAK (VEGFR2 PDB 
IDs: 4ASE, 4ASD, 2QU6, 3VHE, 3EWH, 3VNT, 3WZD, 
and 6XVK. FAK PDB IDs: 4KAO and 4K9Y) [47, 60, 61, 
67–71] were first aligned separately. Several manual 3D 
pharmacophores were created for each protein using 
the aligned set of proteins and co-crystallized ligands 
featuring an extensive variety of the key pharmacophoric 
features (recognition, shape, and site points) for type II 
binding pattern. Furthermore, excluded volumes were 
used to mimic the actual binding constraints by defining 
the steric extent of the amino acid residues lining 
the kinase binding sites. This resulted in 109 and 14 
pharmacophore models for VEGFR2 and FAK inhibitors, 
respectively, that are qualitatively and quantitively 
different, in terms of features’ type, size, and position.

Test set compilation
To assess the performance of the generated 
pharmacophore models for each protein kinase inhibitors 
in discriminating between active inhibitors and inactive 
compounds, a test set of active inhibitors and decoys was 
constructed for each protein kinase to test and validate 
the different manually generated pharmacophore models. 
This test set contains 2240 compounds, including 
1240 compounds for VEGFR2 (39 active inhibitors 
(see Additional file  1: Table  S1. VEGFR2 test set active 
compounds) and 1200 decoys) and 1000 compounds 
for the FAK (17 active inhibitors (see additional file  1: 
Table  S2. FAK manually collected test set compounds) 
and 983 decoys). The test set was constructed so that 
it has a large decoy/active ratio (≈30:1) in efforts to 
mimic the natural chemical space ratio between active 
and inactive compounds. Conformational search was 
then carried out resulting in 43,038 conformers for 
VEGFR2 test set compounds and 33,362 conformers 
for FAK test set compounds, which were then used for 
pharmacophore model selection and validation.

Pharmacophore selection and validation
Based on the pharmacophore models’ capacity to dis-
criminate between active and decoy compounds effi-
ciently, the best models were selected from the various 
generated models. This was determined with the help of 
the compiled test set. As means of evaluating the differ-
ent generated pharmacophore models, various assess-
ment metrics (Se, Sp, Ya, E, acc, DR, and F1) were 
calculated for each one using the results of the phar-
macophore models application on the test set (TP, FP, 
TN, and FN) (for further details see Additional file  1: 

https://www.rcsb.org/
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Table 1 VEGFR2 PDB structures used in training set generation

# PDB ID Ref Ligand structure Ligand/protein interactions IC50 (nM)

VEGFR_1 4ASE [60] 0.04

VEGFR_2 4ASD [60] 2.3

VEGFR_3 2QU6 [67] 15

VEGFR_4 3VHE [68] 6.2
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Table S3. Assessment metrics of pharmacophore models 
performance) [72]. F1 score describes the overall model 
quality in discriminating between active and inactive 

compounds and so was used as the metric of choice for 
best model selection.

Table 1 (continued)

# PDB ID Ref Ligand structure Ligand/protein interactions IC50 (nM)

VEGFR_5 3EWH [69] 69 ± 10

VEGFR_6 3VNT [70] 2.2

VEGFR_7 3WZD [47] 5.1

VEGFR_8 6XVK [71] 0.538
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Table 2 FAK PDB structures used in training set generation

# PDB ID Ref Ligand structure Ligand/protein interactions IC50 (nM)

FAK_1 4K9Y [61] 266

FAK_2 4KAO [61] 7000

Table 3 VEGFR2 pharmacophore model assessment for representative models, in bold is the selected pharmacophore model (see 
Additional file 1, for all models’ results, Table S4)

Ph4‑no N TP FP TN FN Se Sp Ya E Acc Dr F1

VEGFR2_Ph4-6 64 7 24 1176 33 0.18 0.98 0.11 3.39 0.95 0.18 0.2

VEGFR2_Ph4-11 223 28 183 1017 12 0.70 0.85 0.13 3.89 0.84 0.83 0.22

VEGFR2_Ph4-12 63 16 23 1177 24 0.40 0.98 0.25 7.87 0.96 0.41 0.41

VEGFR2_Ph4-17 44 3 4 1196 37 0.08 1.00 0.07 2.11 0.97 0.08 0.13

VEGFR2_Ph4-19 251 30 211 989 10 0.75 0.82 0.12 3.71 0.82 0.91 0.21

VEGFR2_Ph4-21 41 0 1 1199 40 0.00 1.00 0.00 0.00 0.97 0.00 0.00

VEGFR2_Ph4-86 66 3 26 1174 37 0.08 0.98 0.05 1.41 0.95 0.08 0.09

VEGFR2_Ph4-92 44 2 4 1196 38 0.05 1.00 0.05 1.41 0.97 0.05 0.09

VEGFR2_Ph4-95 1164 39 1124 76 1 0.98 0.06 0.03 1.04 0.09 15.39 0.06

VEGFR2_Ph4-99 140 38 100 1100 2 0.95 0.92 0.27 8.41 0.92 1.04 0.43

VEGFR2_Ph4-100 116 38 76 1124 2 0.95 0.94 0.33 10.16 0.94 1.01 0.49

VEGFR2_Ph4-101 123 39 83 1117 1 0.98 0.93 0.32 9.83 0.93 1.05 0.48

VEGFR2_Ph4-102 134 38 94 1106 2 0.95 0.92 0.28 8.79 0.92 1.03 0.44

VEGFR2_Ph4-103 113 38 73 1127 2 0.95 0.94 0.34 10.42 0.94 1.01 0.50

VEGFR2_Ph4-104 109 38 69 1131 2 0.95 0.94 0.35 10.81 0.94 1.01 0.52

VEGFR2_Ph4-105 264 39 224 976 1 0.98 0.81 0.15 4.58 0.82 1.2 0.26

VEGFR2_Ph4-106 225 38 185 1015 2 0.95 0.85 0.17 5.24 0.85 1.12 0.29

VEGFR2_Ph4-107 201 38 161 1039 2 0.95 0.87 0.19 5.86 0.87 1.1 0.32

VEGFR2_Ph4-108 162 38 122 1078 2 0.95 0.90 0.23 7.27 0.9 1.06 0.38

VEGFR2_Ph4-109 122 38 82 1118 2 0.95 0.93 0.31 9.66 0.93 1.02 0.48
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Regarding the generated VEGFR2 pharmacoph-
ore models, Table  3 shows that some models such as 
VEGFR2_Ph4_95 and VEGFR2_Ph4_105 showed a high 
selection potential towards true positives (TP), with sen-
sitivity values of 0.98 and 0.98, respectively. However, 
they showed low accuracy of 0.09 and 0.82, respectively, 
as they yielded a high number of false positives (FP) 
which indicates their lack of specificity (0.06 and 0.81, 
respectively) and their bias towards active compounds. 
On the contrary, other models such as VEGFR2_Ph4_17, 
VEGFR2_Ph4_21, VEGFR2_Ph4_86, VEGFR2_Ph4_92 
models showed high specificity values (1.00, 1.00, 0.98, 
and 1.00, respectively) but they exhibited poor sensitiv-
ity (0.08, 0.00, 0.08, and 0.05, respectively), which means 
that they are very efficient in identifying true negative 
(TN) compounds but have a very weak true positives’ 
sensitivity indicating their bias towards decoy com-
pounds. Models VEGFR2_Ph4_103, VEGFR2_Ph4_104, 
and VEGFR2_Ph4_109 showed a balanced promising 
sensitivity (0.95) and specificity (0.94, 0.94, and 0.93, 
respectively) and so showing no bias towards actives nor 
decoys and so showed the highest F1 score values (0.50, 
0.52, and 0.48, respectively). For the performance of all 
VEGFR2 pharmacophore models see Additional file  1: 
Table S4. VEGFR2 pharmacophore model assessment.

As for the generated FAK pharmacophore models, it 
can be seen in Table 4 that FAK_Ph4_2 and FAK_Ph4_6 
showed high sensitivity (1.00 and 0.94, respectively) 
meaning that they yielded a high number of true 
positives, however, they showed poor specificity (0.46 
and 0.81, respectively) and so could not discard decoys 
and consider them as active compounds (Biased towards 
active compounds). On the contrary, models FAK_Ph4_4, 

FAK_Ph4_8, FAK_Ph4_9, and FAK_Ph4_10 showed 
high specificity (0.99) but low sensitivity (0.71, 0.65, 
0.82 and 0.82, respectively) so, they tend to discard all 
compounds and consider them inactive even the true 
actives (Biased towards inactive compounds). Three 
pharmacophore models FAK_Ph4_9, FAK_Ph4_10, and 
FAK_Ph4_12 showed a balanced promising sensitivity 
(0.82, 0.82, and 0.88) and specificity (0.99, 0.99, and 0.98, 
respectively) and so showing no bias towards actives nor 
decoys and had the highest F1 scores (0.65, 0.65, and 
0.61, respectively), meaning that they had the best overall 
performance and quality.

Generally, pharmacophore models that included 
excluded volumes proved to have a better performance. 
This can be seen in VEGFR2_Ph4_108 and VEGFR2_
Ph4_109, which have the same pharmacophoric features 
but only differ in the number of excluded volumes. As 
for VEGFR2_Ph4_108, there were 359 excluded volumes 
added whilst VEGFR2_Ph4_109 had 378 excluded 
volumes. This difference led to a distinguishable impact 
on their F1 scores, 0.38 and 0.48, respectively. Adding to 
that, FAK_Ph4_12 and FAK_Ph4_13 also had the exact 
same set of features and only varied in the size of the 
hydrophobic features and number of excluded volumes 
(68 vs 10 excluded volumes, respectively). This difference 
led to a drastic impact on the model sensitivity and a 
decrease in the number of false positives obtained by 
FAK_Ph4_12 versus FAK_Ph4_13 by 159 compounds, 
which in turn led to a great increase in the overall 
performance of FAK_Ph4_12 (F1 score of 0.61 for FAK_
Ph4_12 vs 0.14 for FAK_Ph4_13).

Table 4 FAK pharmacophore model assessment, in bold is the selected pharmacophore model

Ph4‑no N TP FP TN FN Se Sp Ya E Acc Dr F1

FAK_Ph4-1 64 15 49 934 2 0.88 0.95 0.23 13.79 0.95 0.93 0.37

FAK_Ph4-2 549 17 532 451 0 1.00 0.46 0.03 1.82 0.47 2.18 0.06

FAK_Ph4-3 42 13 29 954 4 0.76 0.97 0.31 18.21 0.97 0.79 0.44

FAK_Ph4-4 24 12 12 971 5 0.71 0.99 0.50 29.41 0.98 0.71 0.59

FAK_Ph4-5 35 13 22 961 4 0.76 0.98 0.37 21.85 0.97 0.78 0.50

FAK_Ph4-6 204 16 188 795 1 0.94 0.81 0.08 4.61 0.81 1.16 0.14

FAK_Ph4-7 42 13 29 954 4 0.76 0.97 0.31 18.21 0.97 0.79 0.44

FAK_Ph4-8 23 11 12 971 6 0.65 0.99 0.48 28.13 0.98 0.66 0.55

FAK_Ph4-9 26 14 12 971 3 0.82 0.99 0.54 31.67 0.99 0.83 0.65

FAK_Ph4-10 26 14 12 971 3 0.82 0.99 0.54 31.67 0.99 0.83 0.65

FAK_Ph4-11 45 12 33 950 5 0.71 0.97 0.27 15.69 0.96 0.73 0.39

FAK_Ph4-12 32 15 17 966 2 0.88 0.98 0.47 27.57 0.98 0.90 0.61
FAK_Ph4-13 191 15 176 807 2 0.88 0.82 0.08 4.62 0.82 1.07 0.14

FAK_Ph4-14 55 15 40 943 2 0.88 0.96 0.27 16.04 0.96 0.92 0.42



Page 11 of 20Fouad et al. BMC Chemistry           (2024) 18:29  

Selected 3D pharmacophore models
One of the main assessments and selection criteria 
of pharmacophore models is their ability to describe 
and to rationalize the reported experimental structure 
activity relationship (SAR). Therefore, although model 
VEGFR2_Ph4_109 having the third best F1 score after 
VEGFR2_Ph4_103 and VEGFR2_Ph4_104 (Table  3), it 
was chosen as the best VEGFR2 pharmacophore model 
as it efficiently describes the previously reported SAR for 
type II kinase inhibitors (Fig.  4). Likewise, model FAK_
Ph4_12, having the third best F1 score after FAK_Ph4_9 
and FAK_Ph4_10 (Table 4), was chosen as the best FAK 
pharmacophore model as it efficiently describes the 
previously reported SAR for type II kinase inhibitors as 
well (Fig. 4).

Based on the aforementioned findings, pharmacophore 
models VEGFR2_Ph4_109 and FAK_Ph4_12 were chosen 
as the best models amongst the generated models to be 
progressed to virtual screening.

VEGFR2_Ph4_109
As can be seen in Table  3, VEGFR2_Ph4_109 chose 38 
active compounds out of 40, and 82 decoys out of 1200 
as hits. Thus, it showed good sensitivity (Se = 0.95) and 
specificity (Sp = 0.93). It has a discrimination ratio 
(DR) of 1.02, showing a balanced tendency to choose 
true positives and reject true negatives, both of which 
are in the 90–95%  range. It also has a yield of actives 
(Ya) of 31%, enrichment (E) of 9.82, and accuracy (acc) 
of 0.93, suggesting that it is far superior to random 
selection in terms of reliably identifying active hits. 
VEGFR2_Ph4_109 is the perfect example that fits all 
the required aspects in the best pharmacophore model, 
because it is sensitive and specific with a balanced ability 
in identifying true actives as hits (TP) and discarding 
inactive compounds (TN).

As only 38 TP were chosen from the 40 actives 
using Model VEGFR2_Ph4_109, two FN compounds 
were missed and were not mapped on  to the chosen 
pharmacophore, which can be attributed to the following: 
(1) they bind to the binding pocket with a different 
binding pattern other than the training set compounds, 
or (2) the conformational search algorithm did not yield 
a conformational combination comprising the conformer 
that could be mapped onto the pharmacophore of 
interest.

Figure  6a shows the  five features of pharmacophore 
model VEGFR2_Ph4_109 with its inter-feature distances 
(in Å). First, a hydrogen bond acceptor feature (F1:Acc) 
was used to denote the moiety which interacts with 
Cys919 at the hinge region. In the gate area, the pro-
jection feature (F2:Don2) defines the direction of the 
hydrogen bond donor towards the Glu885 amino acid 

residue. In addition to the essential hydrophobic fea-
ture (F3:Hyd) which describes the hydrophobic moiety 
interacting with the hydrophobic back pocket. Another 
essential feature is the hydrogen bond acceptor (F4:Acc) 
which represents the moiety that interacts with the key 
amino acid Asp1046 at the gate area. Lastly, the aromatic 
scaffold of the inhibitor was described using the aromatic 
feature (F5:Aro). Non-essential features were considered 
as optional features, meaning that the compounds might 
or might not have them. 378 excluded volumes were also 
added to this pharmacophore with the purpose of defin-
ing the steric extent of the binding site.

Figure  6b shows the selected pharmacophore model 
VEGFR2_Ph4_109 mapped onto a representative 
VEGFR2 inhibitor (Sorafenib) with an RMSD of 0.355 Å 
from VEGFR2_Ph4_109 feature centers. The low 
RMSD value demonstrates the fact that the compound’s 
pharmacophoric features are well aligned with the 
pharmacophore’s feature centers. Its picoline ring satisfies 
one of the crucial pharmacophoric features for binding in 
the hinge region, F1:Acc, mimicking the ATP nucleotide 
interactions. The carbonyl oxygen of the urea group is 
mapped onto F4:Acc, representing the essential moiety 
for interacting with Asp1064. F2:Don2 lies in position of 
Glu885 in front of the NHs of the urea group as H-bond 
donors. The 4-chloro-3-triflourophenyl moiety satisfies 
the hydrophobic feature (F3:Hyd). Finally, the aromatic 
ring in the middle of the compound satisfies F5:Aro.

Fig. 6 a The selected pharmacophore model for VEGFR2 inhibitors, 
VEGFR2_Ph4_109 (distances in Å) b VEGFR2_Ph4_109 mapped 
onto a VEGFR2 inhibitor
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FAK_Ph4_12
As can be seen in Table  4, model FAK_Ph4_12 
recognized 15 out of the 17 active compounds (TP = 15) 
indicating the good model sensitivity (Se = 0.88). 
Moreover, it exhibited high specificity as well (Sp = 0.98) 
as it disregarded 966 decoy compounds out of the 983 
decoy compounds in the test set (TN = 966). The model 
recognized a total of 32 compounds as hits of them 15 
were active compounds (TP), whereas 17 compounds 
were inactive (FP) giving a yield of actives (Ya) of 47%. 
Furthermore, it showed an enrichment value (E) of 27.57 
proving the success of the pharmacophore model in 
improving the selection process of active compounds via 
the virtual screening technique versus random methods. 
Moreover, FAK_Ph4_12 model had an accuracy (acc) of 
0.98 emphasizing that it can accurately identify active 
compounds while dismissing the inactive ones. Lastly, it 
had a discrimination ratio (DR) of 0.90, which shows that 
this model has a high prediction potential for the inactive 
compounds compared with the active compounds.

Figure 7a shows the selected 3D pharmacophore model, 
FAK_Ph4_12, its pharmacophoric features, and the 
inter-feature distances (in Å) between each other in 3D 
space. This pharmacophore model consists of five main 
features; Feature 1 (F1:Acc), a hydrogen bond acceptor, 
where the ligands bind to Asp564 of the DFG motif at 
the activation loop. Feature 2 (F2:Acc), a hydrogen bond 

acceptor, maps where the ligands bind to Cys502 residue 
in the hinge region. Feature 3 (F3:Don), a hydrogen bond 
donor, which describes the feature required for binding 
to Glu471 residue of the Glu-Lys conserved pair in the 
αC helix of the N-lobe. Finally, features 4 and 5 (F4:Hyd 
and F5:Hyd) where the ligand hydrophobic moieties 
occupy the allosteric hydrophobic back pocket next to 
the ATP binding site. Sixty-eight excluded volumes were 
also added to this pharmacophore with the purpose of 
defining the steric extent of the binding site.

Figure  7b shows the selected pharmacophore model 
FAK_Ph4_12 mapped onto a representative FAK 
inhibitor. The mapped conformer exhibited a low 
RMSD of 0.419  Å from FAK_Ph4_12 feature centers, 
demonstrating the good alignment of its pharmacophoric 
features to FAK_Ph4_12 feature centers. The purine 
nitrogen is mapped onto pharmacophoric feature F2:Acc 
in the hinge region, the urea group onto features F1:Acc 
and F3:Don which lie in the gate area, and lastly the 
5-tert-butyl-2-p-tolyl-pyrazole ring is mapped onto the 
two hydrophobic features F4:Hyd and F5:Hyd residing 
in the hydrophobic back pocket.

Virtual screening and hit filtration
In the current research, ZINCPharmer web tool was 
used to perform the virtual screening step. It is an online 
interface used for screening the purchasable chemicals 
from the ZINC database for promising hits searching 
millions of conformations in just a few minutes [73, 74]. 
The two selected 3D pharmacophore models for both 
proteins were used to virtually screen the ZINC database 
separately and two different sets of hits were obtained, 
one for VEGFR2 and one for FAK. ZINCPharmer has 
several filters that can be used to narrow down the 
retrieved hits. In the current virtual screening, the 
selection was confined to compounds with molecular 
weight between 350 and 500  Da and rotatable bonds 
less than 10 [72].

ZINCPharmer virtual screening yielded 42,616 hits for 
VEGFR2 and 28,475 hits for FAK as depicted in Fig.  8. 
Then, MOE software was used to exclude duplicate com-
pounds MOE. Furthermore, MOE was employed for the 
selection of lead-like compounds according to various 
filters (Table 5). These filters include Oprea lead-like fil-
ter, compounds that violated more than one criterion of 
Lipinski’s rule of five, mutagenic compounds, and those 
with a topological polar surface area (TPSA) more  than 
140 Å2, as well as hits with a Log S less than − 5 [75–79]. 
Furthermore, the PAINS-Remover engine (https:// www. 
cblig and. org/ PAINS) was used to ensure that the cho-
sen hits were neither frequent hitters nor promiscu-
ous compounds that could show positive response in 
assays independent of the protein target and hence have 

Fig. 7 a The selected pharmacophore model for FAK inhibitors, FAK_
Ph4_12 (distances in Å) b FAK_Ph4_12 mapped onto an FAK inhibitor

https://www.cbligand.org/PAINS
https://www.cbligand.org/PAINS
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many negative consequences [80]. This filtration process 
yielded a total of 13,023 compounds for VEGFR2 and 
6,832 compounds for FAK (Fig. 8).

The final survived hits for both targets were compared 
against each other to search for common compound in 
both sets of hits. This resulted in 124 compounds, which 
could have potential dual VEGFR2/FAK inhibitory 
activity.

Despite the large size of the screened database, the 
identified compounds still represent a small portion of 
the chemical space, and a more extensive exploration 
of further chemical libraries using the selected 
pharmacophore models may be necessary to identify 
further novel dual VEGFR2/FAK kinase inhibitors.

Molecular docking
Molecular docking simulations were carried out for the 
124 common compounds to study their binding pattern 
and protein–ligand interactions in both the VEGFR2 and 
FAK binding sites to validate their proposed VEGR2/FAK 
dual inhibitory activity.

VEGFR2-PDB ID: 4ASD [60] and FAK-PDB ID: 4K9Y 
[61] were used to perform the molecular docking study. 
First, self-docking of the co-crystallized ligands in the 

binding pocket of VEGFR2 and FAK was used to validate 
the molecular docking protocols to be used. Self-docking 
gave docking poses with energy scores (S) =  − 15.24 
and − 16.02  kcal/mol and RMSD of 0.355 and 0.151  Å 
from the co-crystalized ligand poses in VEGFR2 and 
FAK, respectively (For further details, see Additional 
file  1; S4.1. Self-docking molecular docking validation). 
Due to its ability to mimic the poses of the co-crystallized 
ligands and their interactions in the VEGFR2 and 
FAK binding site, the docking protocol validation step 
suggested that the used docking protocol was appropriate 
for carrying out the intended molecular docking studies.

Based on the molecular docking study, out of the 124 
compounds, thirteen compounds were found to satisfy 
all necessary interactions with VEGFR2 and FAK bind-
ing site (Hinge region VEGFR2-Cys919 and FAK-Cys502, 
DFG motif VEGFR2-Asp1046 and FAK-Asp564, αC-helix 
of gate area VEGFR2-Glu885 and FAK-Glu471) and thus 
they are expected to have a possible dual binding to both 
kinases. Figure  9 shows a representative compound for 
the promising thirteen compounds (ZINC09875266) 
performing the key interactions in both kinases. This 
compound’s binding pattern represents that exhibited by 
the 13 compounds that were able to achieve all essential 
interactions with the key amino acids in the hinge region 
and gate area, while extending to the hydrophobic back 
pocket of the binding site. See additional file  1; S4.2. 
Docking energy score (S) in kcal/mol for the common 13 
compounds in VEGFR2 and FAK binding sites, for the 
ZINC ID of the 13 promising compounds with their pre-
dicted binding scores in the kinase domains of the target 
proteins VEGFR2 and FAK.

Pharmacokinetic properties prediction
The thirteen common hit compounds showing prom-
ising binding pattern in the binding sites of the tar-
get kinases were subjected further to assessment of 
their pharmacokinetic properties. This step is crucial 

Fig. 8 Virtual screening hit filtration for FAK and VEGFR2

Table 5 Hit filtration criteria

Criterion Cutoff

Lipinski’s rule violation count ≤ 1

 Molecular weight < 500

 logP ≤ 5

 # HBA ≤ 10

 # HBD  ≤ 5

Veber’s rule

 Number of rotatable bonds ≤ 10

 Polar surface area < 140 Å2

LogS ≥  − 5
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to ensure that the chosen hit compounds do not only 
have good binding patterns to our targets, but also have 
desirable ADME characters, meaning they are likely to 
reach their targets in sufficient concentrations, resist 
degradation in biological environments for a reason-
able duration of action, and with limited side effects. 
This was done using SwissADME web tool (http:// 
www. swiss adme. ch) [81]. Figure 10 shows the obtained 
SwissADME Boiled‒Egg plot, which predicts both the 
GIT absorption and BBB permeation of the examined 
compounds [81, 82]. The prediction depends on two 
physicochemical parameters, wlogP and topological 
polar surface area (TPSA) [82]. The white region is the 

physicochemical space of molecules with highest prob-
ability of GIT absorption, and the yellow region (yolk) 
is the physicochemical space of molecules with highest 
probability of BBB permeation. Compounds predicted 
to be P-glycoprotein (P-gp) substrates are shown in 
blue, whereas compounds in red are not. Seven com-
pounds were predicted to be GIT absorbable without 
BBB permeation (i.e., no central side effects), from 
which only one P-glycoprotein (P-gp) non-substrate; 
compound ZINC09875266 (Fig.  11). It also showed a 
promising synthetic accessibility of 2.42 according to 
SwissADME prediction, in a range of 1 to 10 where 1 is 
very easy and 10 is very difficult to synthesize.

Fig. 9 ZINC09875266 docked into FAK and VEGFR binding sites. a VEGFR 3D representation. b VEGFR2 2D representation. c FAK 3D representation. 
d FAK 2D representation

http://www.swissadme.ch
http://www.swissadme.ch
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These results indicate that compound ZINC09875266 
(Fig.  11) is not only promising in terms of binding 
patterns to our target kinases, but also in terms of 
its  pharmacokinetic properties. Noteworthy, these 
findings are computational prediction and further 
in  vitro and in  vivo experimental studies are required 
to validate the potential of the identified compounds as 
novel cancer treatments.

Conclusion
In conclusion, this study focused on the discovery of 
hit compounds that could act as dual-kinase inhibi-
tors targeting VEGFR2 and FAK for potential appli-
cation in cancer treatment. Through receptor-based 

pharmacophore modeling, a set of compounds 
with promising predicted binding capability against 
both targets was identified. a lead-like compound 
(ZINC09875266) was selected as a potential candidate 
for further exploration in designing novel dual-kinase 
inhibitors. The outlook of the current work is that the 
most promising molecules are to be tested in  vitro on 
VEGFR2 and FAK enzymes and on cancer cells and 
in vivo using cancer animal models.

Methodology
Unless otherwise stated, all molecular modelling 
studies were carried out using Molecular Operating 
Environment (MOE, 2020.0901) software.

Protein structure similarity assessment
NCBI Basic Local Alignment Search Tool (BLAST) 
(https:// blast. ncbi. nlm. nih. gov/ Blast. cgi) was used 
to carry out the similarity search between the kinase 
domains of VEGFR2 and FAK. BLAST finds regions 
of local similarity between sequences. The protein 
BLAST (BLASTp) was chosen for identifying similarity 
in amino acid sequences of both proteins. First, the 

Fig. 10 SwissADME Boiled-Egg plot dividing the compounds into three regions: bad oral bioavailability (grey), good oral bioavailability (white), 
and BBB permeation (yellow). The highlighted points represent the compounds with desirable characters

Fig. 11 The chemical structure of the hit compound survived 
the pharmacokinetics filtration step

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Protein Data Bank (https:// www. rcsb. org) was used to 
get the amino acid sequence of both proteins’ kinase 
domains in FASTA format (VEGFR2-PDB-ID: 4ASD, 
FAK-PDB-ID: 4K9Y) [60, 61]. These protein sequences 
were chosen on the basis of being wild type and non-
mutant. The VEGFR2 kinase domain sequence was 
input as the query sequence, while the FAK kinase 
domain sequence was input as the subject sequence, 
then multiple sequence alignment of the amino acids 
was carried out.

Retrieving X‑ray crystallographic structures and training 
set generation
After searching the protein data bank for crystallographic 
structures of the proteins co-crystalized with type II 
inhibitors, we found seventy-four structures for VEGFR 
and only two structures for FAK. For our training set, 
we selected ten X-ray crystallographic structures of the 
proteins co-crystalized with type II inhibitors, eight 
structures for the VEGFR2 (Table 1) and two structures 
for the FAK (Table 2).

The X-ray crystallographic structures of VEGFR2 and 
FAK co-crystallized with different type II inhibitors 
(VEGFR2-PDB ID: 4ASE, 4ASD, 2QU6, 3VHE, 3EWH, 
3VNT, 3WZD, and 6XVK. FAK-PDB ID: 4KAO and 
4K9Y) [47, 60, 61, 67–71] were downloaded from the 
Protein Data Bank (https:// www. rcsb. org/). All the 
downloaded co-crystal structures were inspected, and it 
was confirmed that they perform interactions with all key 
amino acid residues; VEGFR2-Asp1046 and FAK-Asp564 
of the conserved DFG-motif, VEGFR2-Glu885 and 
FAK-Glu471 of the αC-helix at the gate area, and lastly 
VEGFR2-Cys919 and FAK-Cys502 of the hinge region.

Molecular Operating Environment (MOE, 2020.0901) 
software was used to prepare the proteins. Chain A was 
kept in all protein structure, other chains (if any), water 
molecules (if any) and superfluous ligand molecules that 
are not involved in the ligand-target interactions were 
removed. The protein structures were then prepared 
using QuickPrep protocol in MOE with default options.

Pharmacophore model generation
The prepared protein structures from the PDB for 
VEGFR2 and FAK (VEGFR2-PDB ID: 4ASE, 4ASD, 
2QU6, 3VHE, 3EWH, 3VNT, 3WZD, and 6XVK. FAK-
PDB ID: 4KAO and 4K9Y) [47, 60, 61, 67–71] containing 
the co-crystallized inhibitors were aligned separately, 
then superposed using Align protocol in MOE using 
protein structures’ αCs.

Using pharmacophore query editor in MOE, the 
aligned ligands were used to generate several manual 3D 

pharmacophore models for each set of aligned structures 
based on their common interactions with the target 
kinase binding site. The main common ligand-target 
interactions include H-bonding interactions with the 
hinge region VEGFR2-Cys919 and FAK- Cys502, DFG 
VEGFR2-Asp1046 and FAK-Asp564, αC-helix VEGFR2-
Glu885 and FAK-Glu471, in addition to hydrophobic 
interactions with hydrophobic side chains of the amino 
acids lining the hydrophobic allosteric back pocket [25, 
44, 61, 64, 65]. Moreover, several excluded volumes (with 
different volumes and number) were included to define 
the steric extent of the binding site.

Test set compilation
The ultimate goal in virtual screening is to use a protocol 
that is sensitive in filtering the maximum number of 
active hits and simultaneously specific in screening out 
almost all inactive compounds. Thus, in the current work, 
a test set of active inhibitors and decoys was constructed 
for each protein kinase to test and validate the different 
manually generated pharmacophore models to select the 
best performing pharmacophore model in discriminating 
between active compounds and decoys for each protein 
kinase.

This test set contains 2240 compounds, including 
1240 compounds for VEGFR2 and 1000 compounds 
for the FAK. The VEGFR2 test set comprised 39 active 
compounds (see Additional file  1: Table  S1. VEGFR2 
test set active compounds) and 1200 decoy compounds, 
obtained from DEKOIS 2.0 database of benchmark data 
set (www. dekois. com). Whilst the FAK test set contains 
45 self-collected compounds, which included 17 active 
compounds and 28 inactive compounds (see Additional 
file  1: Table  S2. FAK manually collected test set 
compounds) [61, 83–87], as well as 955 decoys retrieved 
from the DUD-E decoy generator [88] (http:// dude. docki 
ng. org/ gener ate). Activity status was determined based 
on their biochemical  IC50 values, with a cutoff of 10 µM 
(active < 10  µM < inactive) as conventionally known for 
kinase inhibitors [89].

The compiled test set compounds were exposed 
to MOE database Wash module which defines the 
most probable protonation state of strong acids and 
strong bases in aqueous near-neutral environment 
to be used. For functional groups which have a pKa 
close to 7, which cannot reasonably be classified as 
being exclusively protonated or deprotonated, the 
protonation state of the unionized input molecule is 
used. Then energy minimized until an RMS gradient 
of 0.1  kcal   mol−1  Å−2 using MOE with Amber10:EHT 
force field. Conformational search was then carried 
out using LowModeMD method in MOE, this method 

https://www.rcsb.org
https://www.rcsb.org/
http://www.dekois.com
http://dude.docking.org/generate
http://dude.docking.org/generate
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is intended for large, perhaps disconnected, complex 
structures like macrocycles and protein loops, but it 
can also be employed for detailed, accurate analysis of 
small molecules [90]. It generates conformations by 
utilizing short ≈ 1  ps runs of molecular dynamics at a 
constant temperature then performs an all-atom energy 
minimization. This resulted in 43,038 conformers for the 
VEGFR2 test set compounds and 33,362 conformers for 
the FAK test set compounds, which were then used for 
pharmacophore model selection and validation.

Pharmacophore selection and validation
Using MOE Pharmacophore Search module, the 
generated test set conformers were screened using 
the different manually generated structure-based 
pharmacophore models to test their ability to 
discriminate between the active and decoy compounds 
of the compiled test sets. MOE pharmacophore search-
algorithm starts by prefiltering the conformers based 
on the feature types and distance similarity to the ones 
mapped on the pharmacophore model; followed by a 
more expensive alignment of the conformer atoms to 
the query feature points minimizing their deviation from 
each other. The quality of the alignments is determined 
using root mean square deviation (RMSD) as a fitness 
criterion.

Various assessment metrics were utilized to assess the 
performance of the different generated pharmacophore 
models to select and validate the best one for each 
protein kinase. The screening output of the test sets 
[True positive (TP), true negative (TN), false positive 
(FP), and false negative (FN)] was used to calculate these 
assessment metrics. These metrics include sensitivity 
(Se), specificity (Sp), yield of actives (Ya), enrichment 
(E), accuracy (acc), discrimination ratio (DR), and 
F1 score (F1) (for further details see Additional file  1: 
Table S3. Assessment metrics of pharmacophore models 
performance).

Virtual screening
According to the previously mentioned assessment 
metrics, the best performing pharmacophore models 
(best discrimination between actives and decoy 
compounds) for VEGFR2 and FAK were used to virtually 
screen the ZINC database (purchasable subset) to obtain 
two separate sets of hits for VEGFR2 and FAK [73]. This 
was done using ZINCPharmer web tool [74], a free online 
virtual screening tool which screens the ZINC database 
(http:// zincp harmer. csb. pitt. edu). A few filters were used 

to limit the hits retrieved to those with molecular weight 
in the range of 350–500 Da and the number of rotatable 
bonds should not exceed ten [72].

Hit filtration
The retrieved hits for each kinase from the virtual 
screening step were then subjected to several consecutive 
filtration stages. Initially, the duplicate hits were removed 
using MOE unique molecule selection. The remaining 
hits were then filtered using the following filters (Table 5); 
mutagenic compounds were identified and removed 
based on the work of Kazius et  al. [75], using MOE. 
Furthermore, using MOE, the Oprea lead-like filter was 
then applied to select only compounds possessing lead-
like properties [76]. The remaining compounds were then 
subjected to further filtration to keep those comply with 
Lipinski’s rule of 5 [77], Veber’s rule [78], and a logS value 
range of lead-like compounds [79] (Table 5).

Finally, Pan-Assay Interference compounds (PAINS)-
containing hits were removed using the online PAINS 
removal tool (https:// www. cblig and. org/ PAINS) [80]. 
These compounds are expected to be promiscuous and 
frequent hitters which can bind to many endogenous 
targets leading to several off-target side effects [91].

The two sets of hits were compared, and common 
compounds were identified using MOE software and they 
were carried forward for the molecular docking studies.

Molecular docking
The previously prepared VEGFR2 X-ray crystallographic 
structure PDB ID: 4ASD was chosen for the molecular 
docking studies for VEGFR2 hits because its 
co-crystallized ligand is a well-known potent angiokinase 
inhibitor (Sorafenib) with an  IC50 of 2.3 nM [60]. As for 
the FAK X-ray crystallographic structure PDB ID: 4K9Y 
was chosen from the two available structures to perform 
the molecular docking simulations due to its non-mutant 
structure [61].

Validation of the molecular docking protocol was 
initially carried out by self-docking of the co-crystallized 
ligands in the vicinity of VEGFR2 and FAK binding 
sites, and thus the co-crystallized ligand was utilized 
to assign the active sites for the molecular docking. 
Using Rigid receptor protocol method, Triangle matcher 
placement method was applied to generate docking 
poses by aligning ligand atom triplets on triplets of 
receptor site points. London dG scoring function was 
utilized to evaluate the binding free energy of the ligand 
in a certain pose within the kinases’ binding sites. This 

http://zincpharmer.csb.pitt.edu
https://www.cbligand.org/PAINS
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specific scoring function considers the rotational and 
translational entropy change, molecular flexibility, 
hydrogen bonding energy and geometry, and the atomic 
desolvation energy. Self-docking gave docking poses 
with energy scores (S) =  − 15.24 and − 16.02  kcal/mol 
and RMSD of 0.355 and 0.151 Å from the co-crystalized 
ligand poses of VEGFR2 and FAK, respectively. Moreover, 
they reproduced the key interactions performed by the 
co-crystalized ligands within the binding sites of the 
target kinases (See additional file1 for further details; 
S4.1. Self-docking molecular docking validation).

The validated molecular docking protocol was then 
used to perform the molecular docking simulations 
for the common hits to study their binding pattern and 
protein–ligand interactions in VEGFR2 and FAK binding 
sites to validate their proposed dual inhibitory effect.

Pharmacokinetic properties prediction
The pharmacokinetic properties of the promising 
common compounds were then calculated using 
SwissADME web tool (http:// www. swiss adme. ch) [81]. 
SwissADME evaluates drug-likeness, pharmacokinetic 
characteristics, and medicinal chemistry friendliness 
of small drug-like molecules [81]. This was performed 
to ensure that the discovered hit molecules are not 
only with promising VEGFR2/FAK binding capabilities 
but also promising ADME properties. Molecules were 
filtered according to several criteria. Molecules with 
predicted low gastrointestinal absorption, predicted 
potential blood brain barrier permeation, or predicted to 
be P-glycoprotein substrates were removed.
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