Open Access

Predicting Abraham model solvent coefficients

  • Jean-Claude Bradley1,
  • Michael H Abraham2,
  • William E AcreeJr3 and
  • Andrew SID Lang4Email author
Chemistry Central Journal20159:12

https://doi.org/10.1186/s13065-015-0085-4

Received: 10 October 2014

Accepted: 29 January 2015

Published: 22 March 2015

Abstract

Background

The Abraham general solvation model can be used in a broad set of scenarios involving partitioning and solubility, yet is limited to a set of solvents with measured Abraham coefficients. Here we extend the range of applicability of Abraham’s model by creating open models that can be used to predict the solvent coefficients for all organic solvents.

Results

We created open random forest models for the solvent coefficients e, s, a, b, and v that had out-of-bag R2 values of 0.31, 0.77, 0.92, 0.47, and 0.63 respectively. The models were used to suggest sustainable solvent replacements for commonly used solvents. For example, our models predict that propylene glycol may be used as a general sustainable solvent replacement for methanol.

Conclusion

The solvent coefficient models extend the range of applicability of the Abraham general solvation equations to all organic solvents. The models were developed under Open Notebook Science conditions which makes them open, reproducible, and as useful as possible.

Keywords

Abraham general solvation model Solvent coefficients Sustainable solvents Solvent replacement Partition coefficients Solubility

Background

The Abraham model was developed and is widely used to predict partition coefficients for both conventional organic solvents [1-11] and ionic liquid solvents [12,13], for the partitioning of drug molecules between blood and select body organs [14-18], and for partitioning into micelles [19] and for prediction of enthalpies of solvation in organic solvents [20] and ionic organic liquids [21]. The Abraham model is based on the linear free energy relationship (LFER)
$$ log\ P = c+e\ E+s\ S+a\ A+b\ B+v\ V $$
(1)
where logP is the solvent/water partition coefficient. Under reasonable conditions, this model can also be used to predict the solubility of organic compounds in organic solvents [22] as follows
$$ log\ {S}_s= log\ {S}_w+c+e\ E+s\ S+a\ A+b\ B+v\ V $$
(2)
where S s is the molar concentration of the solute in the organic solvent, S w is the molar concentration of the solute in water, (c, e, s, a, b) are the solvent coefficients, and (E, S, A, B, V) are the solute descriptors: E is the solute excess molar refractivity in units of (cm^3/mol)/10, S is the solute dipolarity/polarizability, A and B are the overall or summation hydrogen bond acidity and basicity, and V is the McGowan characteristic volume in units of (cm^3/mol)/100.

The solvent coefficients are obtained by linear regression using experimentally determined partitions and solubilities of solutes with known Abraham descriptors. Traditionally, the intercept c is allowed to float and is assumed to encode information not characterized by the other solvent-solute interaction terms. However, for some partitioning systems the value of c can vary greatly depending upon the training-set used [23]. This makes it difficult to directly compare different solvents by examining their solvent coefficients. Van Noort has even suggested that the c-coefficient be derived directly from structure before the other coefficients are determined [24]. A problem with this suggestion is that the c-coefficient depends on the standard state. Partition coefficients can be expressed in concentration units of molarity and mole fractions, and the numerical value of the c-coefficient will be different for each concentration unit. Abraham model correlations considered in this study have partition coefficients expressed in concentration units of molarity.

To date, solvent coefficients have been determined for over 90 commonly used solvents (Additional file 1), and group contribution methods have been developed to approximate all coefficients for certain classes of solvents that do not have published solvent coefficients [25,26]. The solvent coefficients in the supporting material pertain to dry solvents, or solvents that take up very little water (hexane, toluene, etc.). This study expands the applicability of the Abraham model by developing open models, using open descriptors from the Chemistry Development Kit (CDK) [27] that can be used to predict the Abraham solvent coefficients of any organic solvent directly from structure.

Procedure

In order to directly compare various solvents, it is advantageous to first recalculate the solvent coefficients with the c-coefficient equal zero. This was accomplished by using equation (1) to calculate the log P values for 2144 compounds from our Open Data database of compounds with known Abraham descriptors [28] and then by regressing the results against the following equation
$$ log\ P = {e}_0\ E+{s}_0\ S+{a}_0\ A+{b}_0\ B+{v}_0\ V $$
(3)
where the subscript-zero indicates that c = 0 has been used in the regression [29]. As an informational note one could have set the c-coefficient of a given solvent equal to a calculated average value determined from numerical c-coefficients of solvents similar to the solvent under consideration. For example, the c-coefficient of all alkane solvents could be set equal to c = 0.225, which is the average value for the c-coefficients of the 13 alkane and cycloalkane solvents for which log P correlations have been determined. While average values could be used for several solvents, there is the problem of what value to use in the case of solvents for which a similar solvent log P solvent is not available. Abraham model correlations are available for two dialkyl ethers (e.g., diethyl ether and dibutyl ether) and for several alcohols, but not for alkoxyalcohols (e.g., 2-ethoxyethanol, 2-propoxyethanol, 2-butyoxyethanol) which contain both an ether and hydroxyl alcohol group. Our intended solvent set in the present communication includes the alternative “green” solvents, and there a number of solvents in this group that contain multi-functional groups. For several of the solvents on the list of alternative “green” solvents, such as 1,3-dioxan-5-ol, 1,3-dioxolane-4-methanol, 3-hydroxypropionic acid, 5-(hydroxymethyl)furfural, ethyl lactate, furfuryl alcohol, and other solvents, there are no similar solvents having a Abraham model log P correlation. To treat all solvents equally we have elected to set c = 0 in this study.
Table 1 lists the original solvent coefficients together with the c = 0 adjusted coefficients. Comparing the coefficients, we see, not surprisingly, the largest changes in coefficient values occur for solvents with c-values furthest away from zero (Additional file 1). What is intriguing is that all the coefficients move consistently the same way. That is, solvents with negative c-values all saw an increase in e and b (and a decrease in s, a, and v) when recalculated, whereas solvents with positive c-values all saw an increase in s, a, and v (and decrease in e and b).
Table 1

Solvent coefficients

c

e

s

a

b

v

Solvent

e 0

s 0

a 0

b 0

v 0

0.351

0.223

−0.150

−1.035

−4.527

3.972

methyl acetate

0.195

−0.068

−0.924

−4.571

4.152

0.328

0.369

−0.446

−0.700

−4.904

4.150

ethyl acetate

0.343

−0.369

−0.597

−4.945

4.319

0.248

0.356

−0.501

−0.867

−4.973

4.281

butyl acetate

0.336

−0.443

−0.788

−5.005

4.409

−0.605

0.930

−1.153

−1.682

−4.093

4.249

isopropyl myristate

0.977

−1.295

−1.870

−4.018

3.939

0.090

0.205

−0.172

1.305

−4.589

3.833

N-methylacetamide

0.197

−0.151

1.335

−4.601

3.880

0.284

0.128

−0.442

1.180

−4.728

3.856

N-ethylacetamide

0.105

−0.375

1.269

−4.764

4.002

−0.271

0.084

0.209

0.915

−5.003

4.557

dimethylacetamide

0.105

0.145

0.832

−4.970

4.419

0.213

0.034

0.089

1.342

−5.084

4.088

N,N-diethylacetamide

0.017

0.139

1.409

−5.111

4.198

−0.171

0.070

0.308

0.589

−3.152

2.432

formamide

0.083

0.268

0.537

−3.132

2.345

0.114

0.407

−0.287

0.542

−4.085

3.471

N-methylformamide

0.398

−0.260

0.579

−4.100

3.530

0.220

0.034

−0.166

0.935

−4.589

3.730

N-ethylformamide

0.016

−0.114

1.005

−4.617

3.843

−0.305

−0.058

0.343

0.358

−4.865

4.486

DMF

−0.034

0.271

0.264

−4.828

4.330

0.332

0.302

−0.436

0.358

−4.902

3.952

dibutylformamide

0.275

−0.358

0.462

−4.944

4.123

0.276

0.334

−0.714

0.243

−3.320

3.549

methanol

0.312

−0.649

0.330

−3.355

3.691

0.222

0.471

−1.035

0.326

−3.596

3.857

ethanol

0.453

−0.983

0.396

−3.623

3.971

0.243

0.213

−0.575

0.262

−3.450

3.545

ethanol/water(90:10)vol

0.193

−0.518

0.339

−3.481

3.670

0.172

0.175

−0.465

0.260

−3.212

3.323

ethanol/water(80:20)vol

0.161

−0.424

0.314

−3.233

3.411

0.063

0.085

−0.368

0.311

−2.936

3.102

ethanol/water(70:30)vol

0.079

−0.353

0.331

−2.944

3.134

−0.040

0.138

−0.335

0.293

−2.675

2.812

ethanol/water(60:40)vol

0.141

−0.344

0.281

−2.670

2.792

−0.142

0.124

−0.252

0.251

−2.275

2.415

ethanol/water(50:50)vol

0.135

−0.285

0.207

−2.257

2.342

−0.221

0.131

−0.159

0.171

−1.809

1.918

ethanol/water(40:60)vol

0.148

−0.211

0.103

−1.782

1.805

−0.269

0.107

−0.098

0.133

−1.316

1.414

ethanol/water(30:70)vol

0.128

−0.161

0.049

−1.283

1.276

−0.252

0.043

−0.040

0.096

−0.832

0.916

ethanol/water(20:80)vol

0.063

−0.099

0.017

−0.801

0.787

−0.173

−0.023

−0.001

0.065

−0.372

0.454

ethanol/water(10:90)vol

−0.009

−0.042

0.011

−0.350

0.365

0.000

0.000

0.000

0.000

0.000

0.000

water

0.000

0.000

0.000

0.000

0.000

0.139

0.405

−1.029

0.247

−3.767

3.986

1-propanol

0.393

−0.996

0.291

−3.785

4.058

0.099

0.343

−1.049

0.406

−3.827

4.033

2-propanol

0.335

−1.026

0.438

−3.839

4.084

0.188

0.354

−1.127

0.016

−3.568

3.968

2-methyl-1-propanol

0.339

−1.083

0.076

−3.592

4.065

0.211

0.171

−0.947

0.331

−4.085

4.109

2-methyl-2-propanol

0.154

−0.897

0.398

−4.112

4.218

0.165

0.401

−1.011

0.056

−3.958

4.044

1-butanol

0.388

−0.972

0.108

−3.979

4.129

0.127

0.253

−0.976

0.158

−3.882

4.114

2-butanol

0.242

−0.946

0.199

−3.898

4.179

0.073

0.360

−1.273

0.090

−3.770

4.399

3-methyl-1-butanol

0.354

−1.256

0.113

−3.779

4.437

0.150

0.536

−1.229

0.141

−3.864

4.077

1-pentanol

0.524

−1.194

0.188

−3.883

4.154

0.115

0.455

−1.331

0.206

−3.745

4.201

2-pentanol

0.445

−1.304

0.243

−3.759

4.260

0.115

0.492

−1.164

0.054

−3.978

4.131

1-hexanol

0.483

−1.137

0.091

−3.993

4.191

0.035

0.398

−1.063

0.002

−4.342

4.317

1-heptanol

0.395

−1.055

0.014

−4.347

4.335

−0.034

0.489

−1.044

−0.024

−4.235

4.218

1-octanol

0.491

−1.052

−0.034

−4.231

4.201

−0.058

0.616

−1.319

0.026

−4.153

4.279

1-decanol

0.620

−1.333

0.009

−4.146

4.250

−0.096

0.148

−0.841

−0.438

−4.040

4.125

octadecanol

0.155

−0.864

−0.467

−4.028

4.076

0.369

0.386

−1.568

−3.535

−5.215

4.514

pentane

0.357

−1.481

−3.419

−5.261

4.704

0.333

0.560

−1.710

−3.578

−4.939

4.463

hexane

0.533

−1.632

−3.473

−4.981

4.634

0.297

0.643

−1.755

−3.571

−4.946

4.488

heptane

0.619

−1.685

−3.477

−4.983

4.641

0.231

0.738

−1.840

−3.585

−4.907

4.502

octane

0.719

−1.786

−3.512

−4.936

4.621

0.240

0.619

−1.713

−3.532

−4.921

4.482

nonane

0.600

−1.657

−3.457

−4.951

4.606

0.186

0.722

−1.741

−3.449

−4.970

4.476

decane

0.707

−1.697

−3.390

−4.993

4.572

0.058

0.603

−1.661

−3.421

−5.120

4.619

undecane

0.598

−1.647

−3.402

−5.128

4.649

0.114

0.668

−1.644

−3.545

−5.006

4.459

dodecane

0.659

−1.617

−3.509

−5.021

4.518

0.087

0.667

−1.617

−3.587

−4.869

4.433

hexadecane

0.660

−1.596

−3.560

−4.880

4.478

0.320

0.511

−1.685

−3.687

−4.811

4.399

2,2,4-trimethylpentane

0.485

−1.610

−3.586

−4.851

4.564

0.104

0.615

−1.796

−3.070

−4.291

4.518

1,9-decadiene

0.606

−1.771

−3.037

−4.304

4.572

0.116

0.706

−1.616

−3.181

−4.796

4.322

1-hexadecene

0.697

−1.589

−3.144

−4.811

4.382

0.183

0.294

−0.134

−2.801

−4.291

4.180

1,2-dichloroethane

0.279

−0.091

−2.743

−4.314

4.274

0.222

0.273

−0.569

−2.918

−4.883

4.456

1-chlorobutane

0.255

−0.517

−2.848

−4.911

4.570

0.319

0.102

−0.187

−3.058

−4.090

4.324

dichloromethane

0.076

−0.112

−2.957

−4.130

4.488

0.191

0.105

−0.403

−3.112

−3.514

4.395

chloroform

0.089

−0.358

−3.051

−3.538

4.493

0.199

0.523

−1.159

−3.560

−4.594

4.618

carbon tetrachloride

0.507

−1.112

−3.497

−4.619

4.721

0.395

−0.094

−0.594

−1.280

−1.274

3.088

trifluoroethanol

−0.126

−0.501

−1.156

−1.323

3.291

0.350

0.358

−0.820

−0.588

−4.956

4.350

diethyl ether

0.330

−0.737

−0.478

−5.000

4.530

0.176

0.394

−0.985

−1.414

−5.357

4.524

dibutyl ether

0.380

−0.944

−1.358

−5.379

4.615

0.341

0.307

−0.817

−0.618

−5.097

4.425

methyl tert-butyl ether

0.280

−0.737

−0.510

−5.140

4.600

0.142

0.464

−0.588

−3.009

−4.625

4.491

benzene

0.452

−0.554

−2.964

−4.643

4.564

0.139

0.152

−0.374

−3.030

−4.601

4.540

fluorobenzene

0.140

−0.341

−2.985

−4.618

4.611

0.065

0.381

−0.521

−3.183

−4.700

4.614

chlorobenzene

0.375

−0.506

−3.161

−4.708

4.648

−0.017

0.436

−0.424

−3.174

−4.558

4.445

bromobenzene

0.437

−0.428

−3.178

−4.556

4.437

−0.192

0.298

−0.308

−3.213

−4.653

4.588

iodobenzene

0.313

−0.353

−3.272

−4.629

4.490

0.125

0.431

−0.644

−3.002

−4.748

4.524

toluene

0.421

−0.615

−2.962

−4.764

4.589

0.093

0.467

−0.723

−3.001

−4.844

4.514

ethylbenzene

0.459

−0.701

−2.971

−4.856

4.562

0.122

0.377

−0.603

−2.981

−4.961

4.535

m-xylene

0.367

−0.574

−2.941

−4.977

4.598

0.083

0.518

−0.813

−2.884

−4.821

4.559

o-xylene

0.511

−0.793

−2.857

−4.831

4.602

0.166

0.477

−0.812

−2.939

−4.874

4.532

p-xylene

0.463

−0.773

−2.886

−4.895

4.618

−0.196

0.537

0.042

−2.328

−4.608

4.314

nitrobenzene

0.552

−0.004

−2.388

−4.584

4.214

0.159

0.784

−1.678

−3.740

−4.929

4.577

cyclohexane

0.771

−1.640

−3.689

−4.949

4.659

0.023

−0.091

0.793

−1.463

−4.364

3.460

nitromethane

−0.093

0.799

−1.454

−4.368

3.472

0.246

0.782

−1.982

−3.517

−4.293

4.528

methylcyclohexane

0.762

−1.924

−3.439

−4.324

4.655

0.223

0.363

−0.384

−0.238

−4.932

4.450

THF

0.345

−0.332

−0.167

−4.960

4.565

0.123

0.347

−0.033

−0.582

−4.810

4.110

1,4-dioxane

0.337

−0.004

−0.542

−4.826

4.173

0.004

0.168

0.504

−1.283

−4.407

3.421

propylene carbonate

0.167

0.505

−1.281

−4.408

3.423

0.038

0.225

0.058

−0.976

−4.842

4.315

cyclohexanone

0.222

0.067

−0.963

−4.847

4.335

0.147

0.532

0.225

0.840

−4.794

3.674

N-methylpyrrolidinone

0.520

0.260

0.887

−4.813

3.750

0.056

0.332

0.257

1.556

−5.035

3.983

N-methyl-2-piperidone

0.327

0.271

1.575

−5.044

4.012

−0.032

0.696

−0.062

0.014

−4.092

3.405

N-formylmorpholine

0.698

−0.069

0.005

−4.089

3.389

0.097

0.285

0.059

−1.605

−4.562

4.028

benzonitrile

0.277

0.082

−1.574

−4.575

4.078

0.413

0.077

0.326

−1.566

−4.391

3.364

acetonitrile

0.044

0.423

−1.436

−4.443

3.576

−0.270

0.578

−0.511

0.715

−2.619

2.729

ethylene glycol

0.599

−0.575

0.631

−2.585

2.591

0.313

0.312

−0.121

−0.608

−4.753

3.942

acetone

0.287

−0.047

−0.509

−4.792

4.103

0.246

0.256

−0.080

−0.767

−4.855

4.148

butanone

0.236

−0.022

−0.689

−4.886

4.275

−0.194

0.327

0.791

1.260

−4.540

3.361

DMSO

0.342

0.746

1.200

−4.517

3.262

0.047

0.686

−0.943

−3.603

−5.818

4.921

carbon disulfide

0.682

−0.932

−3.587

−5.825

4.946

0.000

0.147

0.601

−0.381

−4.541

3.290

sulfolane

0.147

0.601

−0.380

−4.542

3.290

0.022

0.350

−0.432

0.708

−4.725

4.192

tributyl phosphate

0.544

−0.761

−0.966

−4.374

4.087

0.574

0.715

−1.027

−1.296

−4.512

3.446

peanut oil

0.670

−0.892

−1.121

−4.582

3.744

Original on the left, with c = 0 on the right.

One way to measure the effect of making c = 0 is to evaluate how the values of each solute-solvent term change as measured against the average solute descriptors (Eave = 0.884, Save = 1.002, Aave = 0.173, Bave = 0.486, Vave = 1.308). By multiplying the average absolute deviation of the solvent coefficients and the mean solute descriptor value, e.g. AAE(v) * Mean(Vave), the coefficients shifted from greatest to least in the following order v (0.124), s (0.043), e (0.013), b (0.011), a (0.010).

Results and discussion

Modeling

We calculated CDK descriptors for each solvent using the cdkdescui [30] and then created five random forest models for e0, s0, a0, b0, and v0 using R. The resulting models had out of bag (OOB) R2 values ranging between the barely significant 0.31 for e0 to the very seignificant 0.92 for a0, see the Open Notebook page for more details [29]. It is important to note that due to the limited number of data points, we decided not to split the data into training and test sets and instead use the OOB values which are automatically generated with random forest models as our means of validation. A summary of the modeling results can be found in Table 2.
Table 2

Summary of statistical measures of the results of modeling

Model

N

OOB RMSE

OOB R 2

RMSE

R 2

Most significant descriptor

e0

89

0.181

0.308

0.074

0.885

XLogP

s0

89

0.326

0.768

0.135

0.960

XLogP

a0

89

0.477

0.919

0.205

0.985

nHBAcc

b0

89

0.471

0.474

0.203

0.903

khs.sOH

v0

89

0.228

0.627

0.122

0.933

TopoPSA

Quite why some endpoints are more difficult to model than others is not known. Comparing the OOB R2 values with the standard deviation of the endpoints (e0: 0.31, s0: 0.77, a0: 0.92, b0:0.47, and v0: 0.63) we see no negative correlation between the range of a given endpoint and the actual prediction performances of the associated models as one would possibly suspect. It is our conjecture that as more measured values become available that refined models will have better performance. For now, these models should be used only as an initial starting point for exploring the wider solvent chemical space.

Errors in the predications of the coefficients for new solvents are not equivalent because when used to predict partition coefficients they are scaled by their corresponding Abraham descriptors, see equation 3. Thus, on average, when predicting solvent coefficients for new solvents, the errors in predicting v and s are more significant that errors in predicting a and b due to the difference in the sizes of average values for the solute descriptors. Multiplying the OOB-RMSE for each coefficient by the corresponding average descriptors value we see the following scaled RMSE values for e0, s0, a0, b0, and v0 of 0.16, 0.33, 0.08, 0.23, and 0.30 respectively. Thus the poor OOB R2 values for e0 (0.31) and b0 (0.47) seem not to be as detrimental to the applicability of the model as suggested by a first glance.

To analyze the modeling results further and to investigate model outliers we calculated an adjusted error D, the distance between the observed values and the predicted values scaled by the average descriptor values, for each solvent using the following equation:
$$ D=\sqrt{{\left({e}_0-{e}_0^p\right)}^2{A}_{ave}^2+{\left({s}_0-{s}_0^p\right)}^2{S}_{ave}^2+{\left({a}_0-{a}_0^p\right)}^2{A}_{ave}^2+{\left({b}_0-{b}_0^p\right)}^2{B}_{ave}^2+{\left({v}_0-{v}_0^p\right)}^2{V}_{ave}^2} $$
(4)
where the superscript p indicates the predicted value. These distances were then plotted as colors on a graph with the x and y axes corresponding to the first two principal components of the measured values for e0, s0, a0, b0, and v0, see Figure 1. Those solvents colored red have higher calculated distances between their measured and predicted values [Figure 1].
Figure 1

Performance of the models on the existing chemical space of solvents with known coefficients. The red color indicates poor performance – model outliers.

As we can see from the figure, model outliers include: formamide, trifluoroethanol, carbon disulfide, and DMSO. These solvents are on the outskirts of the chemical space. In fact, we can clearly see that the model makes far better predictions for solvents towards the center of the chemical space with particular success in predicting the coefficients for series such as alkanes and alcohols. These observations should give us caution when using the models to predict the solvent coefficients for novel solvents, especially when they do not lie within the chemical space established by solvents with known coefficients.

These Open Models (CC0) can be downloaded from the Open Notebook pages [29,31] and can be used to predict the solvent coefficients for any organic solvent; either with the view of predicting partition coefficients or other partitioning processes including solubilities via equation (1); or with the view of finding replacement and novel solvents for current syntheses, recrystallization procedures, and other solvent dependent processes [32]. As an informational note we remind readers that solute solubility and partitioning are only two of the considerations in finding an appropriate replacement solvent. Other considerations include the toxicity and the purchase price of the solvent, disposal costs of the solvent, physical properties of the solvent, and whether or not the solvent undergoes any undesired chemical reactions with other chemical compounds that might be present in the solution. For example, some chemical reactions take place at elevated temperatures and here one would want to use a solvent having a sufficiently high boiling point temperature that it would not vaporize under the experimental conditions.

Sustainable solvents

As an example of the application of our models, we used our models to calculate the solvent descriptors for a list of sustainable solvents from a paper by Moity et. al. [33]. The resulting coefficients for 119 select novel sustainable solvents are presented in Table 3. A complete set of coefficients for all 293 solvents (sustainable, classic, and measured) can be found in Additional file 2. These values should be used in light of the limitation of the model as described above, as possible starting places for further investigation, and not as gospel.
Table 3

Predicted solvent coefficients for select sustainable solvents

Solvent

e 0

s 0

a 0

b 0

v 0

1,3-dioxan-5-ol

0.407

−0.238

−0.110

−3.616

3.523

1,3-dioxolane

0.311

−0.233

−0.305

−4.661

4.029

1,3-dioxolane-4-methanol

0.404

−0.250

−0.108

−3.641

3.528

1,4-cineol

0.397

−0.616

−0.909

−4.718

4.299

1,8-cineol

0.393

−0.581

−0.921

−4.723

4.316

2-butoxy-1,3-propanediol

0.452

−0.493

−0.285

−3.531

3.826

2-furfuraldehyde

0.300

0.023

−0.539

−4.305

3.885

2-methyltetrahydrofuran

0.344

−0.557

−0.565

−4.686

4.440

2-pyrrolidone

0.306

0.011

0.734

−4.709

4.020

3-hydroxypropionic acid

0.324

−0.155

−0.180

−3.758

3.500

3-methoxy-3-methyl-1-butanol

0.310

−0.637

−0.200

−3.916

4.002

5-(hydroxymethyl)furfural

0.413

0.084

−0.314

−3.451

3.729

acetic acid

0.193

0.016

−0.103

−3.625

3.565

acetyl tributyl citrate

0.689

−0.837

−1.091

−4.415

3.969

alpha-pinene

0.544

−1.225

−3.200

−4.719

4.511

alpha-terpineol

0.410

−0.853

−0.527

−4.003

4.172

benzyl alcohol

0.365

−0.399

−0.381

−3.949

4.143

benzyl benzoate

0.483

−0.550

−1.155

−4.526

4.072

beta-farnesen

0.576

−1.418

−3.214

−4.852

4.470

beta-myrcene

0.572

−1.421

−3.173

−4.904

4.599

beta-pinene

0.543

−1.245

−3.217

−4.723

4.511

beta-terpineol

0.439

−0.807

−0.554

−4.038

4.158

butyl laurate

0.617

−0.934

−1.210

−4.578

4.108

butyl myristate

0.635

−0.922

−1.210

−4.541

4.108

butyl palmitate

0.623

−0.917

−1.210

−4.541

4.106

butyl stearate

0.615

−0.917

−1.208

−4.538

4.106

caprylic acid diethanolamide

0.476

−0.532

−0.279

−3.717

3.864

cyclademol

0.463

−1.076

−0.413

−4.012

4.182

cyclopentyl methyl ether

0.385

−0.387

−0.654

−4.717

4.470

decamethylcyclo-pentasiloxane

0.460

−0.728

−0.788

−4.318

3.963

dibutyl sebacate

0.680

−0.892

−1.239

−4.329

3.976

diethyl adipate

0.359

−0.384

−0.954

−4.515

4.025

diethyl glutarate

0.349

−0.308

−0.979

−4.477

4.021

diethyl phthalate

0.444

−0.397

−1.082

−4.412

4.016

diethyl succinate

0.354

−0.169

−0.897

−4.480

3.956

dihydromyrcenol

0.479

−1.150

−0.458

−4.025

4.272

diisoamylsuccinate

0.571

−0.700

−1.006

−4.286

3.973

diisobutyl adipate

0.464

−0.607

−0.997

−4.338

4.007

diisobutyl glutarate

0.481

−0.543

−1.019

−4.301

4.000

diisobutyl succinate

0.424

−0.430

−1.007

−4.326

3.982

diisooctyl succinate

0.711

−0.861

−1.127

−4.262

3.967

dimethyl 2-methylglutarate

0.344

−0.144

−0.783

−4.365

3.879

dimethyl adipate

0.345

−0.156

−0.875

−4.446

3.878

dimethyl glutarate

0.342

−0.099

−0.855

−4.422

3.849

dimethyl isosorbide

0.353

−0.132

−0.394

−4.083

3.587

dimethyl phthalate

0.411

−0.189

−1.005

−4.385

3.940

dimethyl succinate

0.337

0.063

−0.704

−4.430

3.830

dioctyl succinate

0.701

−0.891

−1.233

−4.298

3.966

dipropyleneglycol

0.392

−0.442

−0.225

−3.468

3.748

d-limonene

0.558

−1.298

−3.188

−4.832

4.527

ethyl lactate

0.242

−0.026

−0.412

−3.575

3.868

ethyl laurate

0.590

−0.902

−1.133

−4.660

4.124

ethyl linoleate

0.531

−0.837

−1.094

−4.519

4.129

ethyl linolenate

0.535

−0.838

−1.100

−4.522

4.135

ethyl myristate

0.601

−0.934

−1.168

−4.585

4.116

ethyl oleate

0.577

−0.885

−1.120

−4.520

4.114

ethyl palmitate

0.630

−0.922

−1.179

−4.544

4.111

ethylhexyllactate

0.515

−0.690

−0.821

−3.643

3.974

furfuryl alcohol

0.351

−0.195

−0.047

−3.553

3.880

gamma-valerolactone

0.293

0.151

−0.795

−4.521

3.957

geraniol

0.435

−0.953

−0.428

−4.113

4.238

geranyl acetate

0.517

−0.799

−1.124

−4.625

4.128

glycerol

0.405

−0.430

0.076

−3.421

3.476

glycerol carbonate

0.282

0.082

−0.587

−3.530

3.529

glycerol triacetate

0.325

−0.139

−0.913

−4.381

3.893

glycerol-1,2,3-tributyl ether

0.542

−0.934

−0.994

−4.257

4.082

glycerol-1,2,3-triethyl ether

0.370

−0.473

−0.778

−4.427

4.078

glycerol-1,2,3-trimethyl ether

0.315

−0.358

−0.407

−4.280

3.931

glycerol-1,2-dibutyl ether

0.437

−0.680

−0.624

−3.709

3.983

glycerol-1,2-diethyl ether

0.361

−0.415

−0.244

−3.663

3.932

glycerol-1,2-dimethyl ether

0.338

−0.410

−0.121

−3.525

3.663

glycerol-1,3-Dibutyl ether

0.423

−0.658

−0.583

−3.592

4.001

glycerol-1,3-diethyl ether

0.357

−0.398

−0.255

−3.555

3.864

glycerol-1,3-dimethyl ether

0.324

−0.402

−0.131

−3.467

3.676

glycerol-1-ethyl monoether

0.424

−0.380

−0.172

−3.432

3.583

glycerol-1-methyl monoether

0.394

−0.376

−0.106

−3.403

3.510

glycerol-2-ethyl monoether

0.435

−0.400

−0.151

−3.430

3.579

glycerol-2-methyl monoether

0.403

−0.429

−0.108

−3.382

3.500

glycofurol (n = 2)

0.479

−0.420

−0.427

−3.354

3.673

isoamyl acetate

0.310

−0.358

−0.830

−4.754

4.262

isobutyl acetate

0.251

−0.237

−0.798

−4.771

4.249

isododecane

0.631

−1.656

−3.473

−4.842

4.548

isopropyl palmitate

0.730

−0.984

−1.332

−4.354

4.040

isopropylacetate

0.232

−0.186

−0.803

−4.708

4.234

isosorbide dioctanoate

0.618

−0.827

−1.092

−4.216

3.888

menthanol

0.485

−1.103

−0.435

−4.031

4.184

menthanyl acetate

0.568

−0.685

−1.121

−4.472

4.094

menthyl acetate

0.566

−0.697

−1.117

−4.508

4.107

methyl 5-(dimethylamino) 2-methyl-oxopentanoate

0.323

−0.119

−0.405

−4.378

3.848

methyl abietate

0.635

−0.720

−1.152

−4.450

4.083

methyl laurate

0.535

−0.858

−1.071

−4.676

4.090

methyl linoleate

0.505

−0.806

−1.028

−4.524

4.081

methyl linolenate

0.510

−0.794

−1.023

−4.523

4.097

methyl myristate

0.583

−0.885

−1.110

−4.645

4.078

methyl oleate

0.572

−0.852

−1.072

−4.523

4.078

methyl palmitate

0.611

−0.890

−1.127

−4.578

4.076

methyl ricinoleate

0.578

−0.808

−0.890

−3.915

3.979

methyl stearate

0.591

−0.880

−1.121

−4.554

4.074

N,N-diethylolcapramide

0.485

−0.640

−0.330

−3.718

3.857

N,N-dimethyldecanamide

0.563

−0.767

−0.035

−4.812

4.103

N,N-dimethyloctanamide

0.484

−0.549

−0.010

−4.843

4.121

nopol

0.365

−0.784

−0.385

−4.026

4.112

n-propyl acetate

0.299

−0.349

−0.738

−4.889

4.267

oleic acid

0.485

−0.817

−0.611

−4.106

4.042

p-cymene

0.564

−1.163

−3.112

−4.797

4.526

PEG 200

0.490

−0.423

−0.310

−3.297

3.495

PEG 600

0.469

−0.528

−0.309

−3.307

3.502

perfluorooctane

0.386

−0.813

−2.663

−4.033

4.079

propionic acid

0.207

−0.105

−0.185

−3.981

3.840

1,2-propylene glycol

0.387

−0.447

0.259

−3.447

3.586

ricinoleic acid

0.477

−0.812

−0.787

−3.938

3.971

solketal

0.297

−0.208

−0.251

−3.678

3.789

terpineol acetate

0.470

−0.618

−1.089

−4.541

4.097

terpinolene

0.544

−1.209

−3.212

−4.860

4.535

tetrahydrofurfurylic alcohol

0.433

−0.365

−0.168

−3.544

3.857

tributyl citrate

0.572

−0.723

−0.887

−3.892

3.961

triethyl citrate

0.379

−0.317

−0.618

−3.835

3.826

trimethylene glycol

0.434

−0.627

0.236

−3.726

3.600

By comparing the predicted solvent coefficients to that of solvents with measured coefficients, we can make solvent replacement suggestions both in general and in particular. In general, the distance between solvents can be measured as the difference in predicted solubilities for the average compound.
$$ d= log\ {P}_1- log\ {P}_2= log\ {S}_1- log\ {S}_2 $$
(5)
$$ d=\left({e}_{01}-{e}_{02}\right)*{E}_{ave}+\left({s}_{01}-{s}_{02}\right)*{S}_{ave}+\left({a}_{01}-{a}_{02}\right)*{A}_{ave}+\left({b}_{01}-{b}_{02}\right)*{B}_{ave}+\left({v}_{01}-{v}_{02}\right)*{V}_{ave} $$
(6)
Using this method we found several possible replacements. For example, 1,2-propylene glycol (e0 = 0.387, s0 = −0.447, a0 = 0.259, b0 = −3.447, v0 = 3.586) and methanol (e0 = 0.312, s0 = −0.649, a0 = 0.330, b0 = −3.355, v0 = 3.691) have a d-value of 0.07. This suggests that 1,2-propylene glycol may be a general sustainable solvent replacement for methanol. To confirm our model’s suggestion, we compared the solubilities of compounds from the Open Notebook Science Challenge solubility database [34] that had solubility values for both 1,2-propylene glycol and methanol, see [Figure 2].
Figure 2

Experimental solubilities in both methanol and 1,2-propylene glycol.

Examining Figure 2, we see that solubility values are of the same order in most cases. The biggest discrepancy being for dimethyl fumerate. The measured solubility values are reported to be 0.182 M and 0.005 M for methanol and propylene glycol respectively [34], whereas the predicted solubilities are 0.174 M for methanol and 0.232 M for propylene glycol based upon the Abraham descriptors: E = 0.292, S = 1.511, A = 0.000, B = 0.456, V = 1.060 [35]. This suggests that the reported value for the solubility of dimethyl fumerate in ethylene glycol may be incorrect and that, in general, 1,2-propylene glycol is a sustainable solvent replacement for methanol.

Other strongly suggested general replacements include: dimethyl adipate for hexane, ethanol/water(50:50)vol for o-dichlorobenzene, and alpha-pinene for 1,1,1-trichloroethane. Many more replacement suggestions can be generated by this technique.

In a similar manner to the above procedure for general solvent replacement for all possible solutes, one can easily compare partition and solvation properties across all solvents for a specific solute (or set of solutes) with known or predicted Abraham descriptors (E, S, A, B, V). For example, using descriptors E = 0.730, S = 0.90, A = 0.59, B = 0.40, V = 0.9317 for benzoic acid (and using d = 0.001), we can make several benzoic acid-specific solvent replacement recommendations, see Table 4. These replacement suggestions do not seem unreasonable chemically and several examples can be explicitly verified by comparing actual measured solubility values [34]. Such a procedure can easily be done for other specific compounds with known or predicted Abraham descriptors to find alternative green solvents in varying specific circumstances (solubility, partition, etc.).
Table 4

Replacement solvent suggestions for procedures involving benzoic acid

Solvents

Possible replacement

benzonitrile

1,4-cineol

1-hexanol

N,N-diethylolcapramide

sulfolane

ethylene glycol

methyl tert-butyl ether

diethyl succinate

diethyl ether

ethylhexyllactate

2-pentanol

gamma-valerolactone

2-methyl-2-propanol

glycerol, cyclopentyl methyl ether

trifluoroethanol

methyl ricinoleate

diphenyl ether

isopropyl palmitate

n-propylamine

ricinoleic acid

propionitrile

1,4-cineol

ethylenediamine

diisobutyl adipate

2,6-dimethylpyridine

ethyl acetate

4-picoline

ethanol/water(80:20)vol

diethylamine

glycerol-1,2,3-triethyl ether, dihydromyrcenol

morpholine

ethanol/water(90:10)vol

diethylene glycol

glycerol-1-ethyl monoether

2-aminoethanol

glycerol-1-methyl monoether

3-pentanol

glycerol-2-methyl monoether

aniline

dimethyl phthalate

2-methyl-2-butanol

2-furfuraldehyde

nitroethane

butyl myristate

In addition to sustainable solvents, we also considered the list of commonly used solvents in the pharmaceutical industry [36]. Of all the solvents listed, the only one not covered previously by this work (Additional file 2) was 4-methylpent-3-en-2-one which has SMILES: O = C(\\C = C(/C)C)C and predicted solvent coefficients: e0 = 0.269, s0 = −0.362, a0 = −0.610, b0 = −4.830, v0 = 4.240.

Conclusions

We have provided a set of Open Models that can be used to predict the Abraham coefficients for any organic solvent. These coefficients can then in turn be used to predict various partition processes and solubilities of compounds with known or predicted Abraham descriptors. We illustrated the usefulness of the models by demonstrating how one can compare solvent coefficients both in general and in particular for specific solutes or sets of solutes to find solvent replacement leads.

Abbreviations

LFER: 

Linear free energy relationship

CDK: 

Chemistry development kit

AAE: 

Average absolute error

OOB: 

Out of bag

DMF: 

Dimethyl formamide

THF: 

Tetrahydrofuran

DMSO: 

Dimethyl sulfoxide

PEG: 

Polyethylene glycol

SMILES: 

Simplified molecular-input line-entry system

CSID: 

ChemSpider ID

ONS: 

Open Notebook Science

Declarations

Authors’ Affiliations

(1)
Department of Chemistry, Drexel University
(2)
Department of Chemistry, University College London
(3)
Department of Chemistry, University of North Texas
(4)
Department of Computing and Mathematics, Oral Roberts University

References

  1. Sprunger LM, Achi SS, Pointer R, Acree Jr WE, Abraham MH. Development of Abraham model correlations for solvation characteristics of secondary and branched alcohols. Fluid Phase Equilibr. 2010;288:121–7.View ArticleGoogle Scholar
  2. Sprunger LM, Achi SS, Pointer R, Blake-Taylor BH, Acree Jr WE, Abraham MH. Development of Abraham model correlations for solvation characteristics of linear alcohols. Fluid Phase Equilibr. 2009;286:170–4.View ArticleGoogle Scholar
  3. Sprunger LM, Proctor A, Acree Jr WE, Abraham MH, Benjelloun-Dakhama N. Correlation and prediction of partition coefficient between the gas phase and water, and the solvents dry methyl acetate, dry and wet ethyl acetate, and dry and wet butyl acetate. Fluid Phase Equilibr. 2008;270:30–44.View ArticleGoogle Scholar
  4. Abraham MH, Acree Jr WE, Leo AJ, Hoekman D. The partition of compounds from water and from air into wet and dry ketones. New J Chem. 2009;33:568–73.View ArticleGoogle Scholar
  5. Abraham MH, Acree Jr WE, Cometto-Muniz JE. Partition of compounds from water and from air into amides. New J Chem. 2009;33:2034–43.View ArticleGoogle Scholar
  6. Abraham MH, Acree Jr WE, Leo AJ, Hoekman D. Partition of compounds from water and from air into the wet and dry monohalobenzenes. New J Chem. 2009;33:1685–92.View ArticleGoogle Scholar
  7. Abraham MH, Acree Jr WE. Comparison of solubility of gases and vapours in wet and dry alcohols, especially octan-1-ol. J Phys Org Chem. 2008;21:823–32.View ArticleGoogle Scholar
  8. Sprunger LM, Achi SS, Acree Jr WE, Abraham MH, Leo AJ, Hoekman D. Correlation and prediction of solute transfer to chloroalkanes from both water and the gas phase. Fluid Phase Equilibr. 2009;281:144–62.View ArticleGoogle Scholar
  9. Sprunger LM, Gibbs J, Acree Jr WE, Abraham MH. Correlation and prediction of partition coefficients for solute transfer to 1,2-dichloroethane from both water and from the gas phase. Fluid Phase Equilibr. 2008;273:78–86.View ArticleGoogle Scholar
  10. Abraham MH, Zissimos AM, Acree Jr WE. Partition of solutes into wet and dry ethers; an LFER analysis. New J Chem. 2003;27:1041–4.View ArticleGoogle Scholar
  11. Abraham MH, Zissimos AM, Acree Jr WE. Partition of solutes from the gas phase and from water to wet and dry di-n-butyl ether: a linear free energy relationship analysis. Phys Chem Chem Phys. 2001;3:3732–6.View ArticleGoogle Scholar
  12. Acree Jr WE, Abraham MH. The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship. J Chem Technol Biotechnol. 2006;81:1441–6.View ArticleGoogle Scholar
  13. Abraham MH, Acree Jr WE. Comparative analysis of solvation and selectivity in room temperature ionic liquids using the Abraham linear free energy relationship. Green Chem. 2006;8:906–15.View ArticleGoogle Scholar
  14. Abraham MH, Ibrahim A, Acree Jr WE. Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs. Eur J Med Chem. 2007;42:743–51.View ArticleGoogle Scholar
  15. Abraham MH, Ibrahim A, Acree Jr WE. Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: linear free energy analyses. Eur J Med Chem. 2008;41:494–502.View ArticleGoogle Scholar
  16. Abraham MH, Ibrahim A, Zhao Y, Acree Jr WE. A database for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. J Pharm Sci. 2006;95:2091–100.View ArticleGoogle Scholar
  17. Abraham MH, Ibrahim A. Air to fat and blood to fat distribution of volatile organic compounds and drugs: Linear free energy analyses. Eur J Med Chem. 2006;41:1430–8.View ArticleGoogle Scholar
  18. Abraham MH, Ibrahim A, Acree Jr WE. Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: Linear free energy analyses. Chem Res Toxicol. 2006;19:801–8.View ArticleGoogle Scholar
  19. Sprunger LM, Gibbs J, Acree Jr WE, Abraham MH. Linear free energy relationship correlation of the distribution of solutes between water and cetyltrimethylammonium bromide (CTAB) micelles. QSAR Comb Sci. 2009;28:72–88.View ArticleGoogle Scholar
  20. Wilson A, Tian A, Dabadge N, Acree Jr WE, Varfolomeev MA, Rakipov IT, et al. Enthalpy of solvation correlations for organic solutes and gases in dichloromethane and 1,4-dioxane. Struct Chem. 2013;24:1841–53.View ArticleGoogle Scholar
  21. Stephens TW, Chou V, Quay AN, Shen C, Dabadge N, Tian A, et al. Thermochemical investigations of solute transfer into ionic liquid solvents: Updated Abraham model equation coefficients for solute activity coefficient and partition coefficient predictions. Phys Chem Liquids. 2014;52:488–518.View ArticleGoogle Scholar
  22. Abraham MH, Smith RE, Luchtefeld R, Boorem AJ, Luo R, Acree Jr WE. Prediction of solubility of drugs and other compounds in organic solvents. J Pharm Sci. 2010;99:1500–15.View ArticleGoogle Scholar
  23. Bradley J-C, Acree Jr. WE, Lang ASID. An open logP model based upon Abraham Descriptors. ONS Challenge. Open Notebook. [http://onschallenge.wikispaces.com/ADlogP001]
  24. Van Noort PCM. Solvation thermodynamics and the physical–chemical meaning of the constant in Abraham solvation equations. Chemosphere. 2012;87:125–31.View ArticleGoogle Scholar
  25. Grubbs LM, Saifullaha M, De La Rosa NE, Yea S, Achia SS, Acree Jr WE, et al. Mathematical correlations for describing solute transfer into functionalized alkane solvents containing hydroxyl, ether, ester or ketone solvents. Fluid Phase Equilib. 2010;298(1:15):48–53.View ArticleGoogle Scholar
  26. Sprunger LM, Achi SS, Acree Jr WE, Abraham MH. Reply to comments of Endo and Goss concerning “development of correlations for describing solute transfer into acyclic alcohol solvents based on the Abraham model and fragment-specific equation coefficients. Fluid Phase Equilibr. 2010;295:148–50.View ArticleGoogle Scholar
  27. The Chemistry Development Kit [http://sourceforge.net/projects/cdk]
  28. Bradley J-C, Acree Jr. WE, Lang ASID. Compounds with known Abraham descriptors. figshare 2014. [http://dx.doi.org/10.6084/m9.figshare.1176994]
  29. Bradley J-C, Lang ASID. Solvent coefficients for alternative ‘safe’ solvents. ONS Challenge. Open Notebook. [http://onschallenge.wikispaces.com/AbrahamSolventsModel003]
  30. Guha R. CDK Descriptor UI. [https://github.com/rajarshi/cdkdescui]
  31. Lang ASID. ONS Models in R. ONS Challenge. Open Notebook. [http://onschallenge.wikispaces.com/ONSModels-R]
  32. Bradley J-C, Acree Jr. WE, Lang ASID. Solvent coefficients for sustainable solvents. ONS Challenge. Open Notebook. [http://onschallenge.wikispaces.com/AbrahamSolventsModel004]
  33. Moity L, Durand M, Benazzouz A, Pierlot C, Molinier V, Aubry J-M. Panorama of sustainable solvents using the COSMO-RS approach. Green Chem. 2012;14:4.View ArticleGoogle Scholar
  34. Bradley J-C, Guha R, Hooker B, Koch SJ, Lang ASID, Neylon C, et al.: Open Notebook Science Solubility Challenge. Open Notebook [http://onschallenge.wikispaces.com/]
  35. Bradley J-C, Lang ASID. Real-time prediction of Abraham descriptors by Chemspider ID for measured solubilities in the Open Notebook Science Challenge solubility database. Webservice. [http://showme.physics.drexel.edu/onsc/models/solventselector.php?csids=553171&limreact=0&limprod=0&bp=0&washes=0]
  36. Grodowska K, Parczewski A. Organic solvents in the pharmaceutical industry. Acta Pol Pharm. 2010;67:3.Google Scholar

Copyright

© Bradley et al.; licensee Springer. 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.