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Abstract 

Background:  Quantitative structure activity relationship was carried out to study a series of PIM1 and PIM2 inhibi-
tors. The present study was performed on twenty-five substituted 5-(1H-indol-5-yl)-1,3,4-thiadiazols as PIM1 and PIM2 
inhibitors having pIC50 ranging from 5.55 to 9 µM and from 4.66 to 8.22 µM, respectively, using genetic function algo-
rithm for variable selection and multiple linear regression analysis (MLR) to establish unambiguous and simple QSAR 
models based on topological molecular descriptors.

Results:  Results showed that the MLR predict activity in a satisfactory manner for both activities. Consequently, the 
aim of the current study is twofold, first, a simple linear QSAR model was developed, which could be easily handled 
by chemist to screen chemical databases, or design for new potent PIM1 and PIM2 inhibitors. Second, the outcomes 
extracted from the current study were exploited to predict the PIM inhibitory activity of some studied compound 
analogues.

Conclusions:  The goal of this study is to develop easy and convenient QSAR model could be handled by everyone to 
screen chemical databases or to design newly PIM1 and PIM2 inhibitors derived from 5-(1H-indol-5-yl)-1,3,4-thiadiazol. 
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Background
PIM1, PIM2 and PIM3 (proviral integration site for 
moloney murine leukaemia virus) kinases form a three-
member subgroup of serine/threonine kinases fam-
ily, which share a high level of sequence homology and 
exhibit some functional redundancy. They attracted 
recent attention for their potential role in tumorigenesis, 
tumor cell survival and resistance to antitumor agents, 
thus, these findings make them an attractive target for 
cancer therapy [1, 2].

In the literature, several classes of molecules as pyra-
zines [3], cinnamic acid [4] and pyrrolo carbazole [5] 
have been designed and synthesized to be able to inhibit 
the PIM1 and PIM2 as well as to exhibit an antican-
cer activity, and they have been studied with different 
approaches so far, but this way is regarded as time con-
suming and very costly. Hence, in order to reduce time 
and cost also, to design more potent PIM inhibitors, 
theoretical research can circumvent these difficulties 
and allow obtaining precise data while taking advantage 
of the rapid progress of computing chemical descriptors, 
which can be obtained easily from publicly available soft-
ware and servers. Therefore, developing predictive quan-
titative structure activity relationship (QSAR) models to 
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predict the activity of new synthesized or designed PIM 
inhibitors is highly desired.

In this context, the QSAR of thiadiazoles still receives 
considerable attention because these agents represent a 
large family of multi-biological activity substances and 
continue to be a source of new drugs as witnessed over 
recent decades. Thus, it is important to extend these find-
ings with all available data. Recently, a series of some 
potent PIM1 and PIM2 inhibitors have been designed 
and reported by Bin Wu and al. [6]. To the best of our 
knowledge, no QSAR studies have been carried out based 
on the reported activities of this series. That prompted us 
to aim an in silico study based on it, as well as to gen-
eralize beyond the data to screen and predict inhibitory 
activity of other analogues molecules.

Quantitative structure–activity relationship (QSAR) has 
been widely used last years in drug discovery and drug 
design by medicinal chemists [7, 8] and in various prac-
tical applications [9, 10] to provide quantitative analysis 
of structure and biological activity relationships of com-
pounds. Different QSAR studies were reported to identify 
important structural features responsible for the biologi-
cal activity and to develop predictive models for diverse 
chemicals by different authors [11, 12]. Thus, it becomes 
necessary to develop a QSAR model for the prediction of 
activity before synthesis of new PIM1 and PIM2 inhibi-
tors. Because, a successful QSAR model is not only helps 
to understand relationships between the physicochemi-
cal properties and biological activity of any class of mol-
ecules, but also provides researchers a deep analysis about 
the lead molecules to be used in further studies [13].

Therefore, the current research aims to derive highly 
correlation models, which explain the relationship 
between the anticancer activity, and the structure of 
twenty-five compounds based on physicochemical 
descriptors using several chemometric methods such as 
genetic function algorithm GFA, multiple linear regres-
sion MLR. Consequently, the principal goal of this work 
is to develop easy and convenient QSAR model could be 
handled by everyone for screening or designing newly 
PIM1 and PIM2 inhibitors derived from thiadiazoles.

Methods
PIM1 and PIM2 inhibitory activities of a series of twenty-
five of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amine deriva-
tives were taken from literature [6] each activity was 
expressed as IC50 (µM) then was converted to pIC50 as 
pIC50 = −log IC50. Figure 1 and Table 1 show the substi-
tuted structures of the studied compounds. For modeling 
purpose, the data set was split into two sets. Nineteen 
molecules were randomly chosen to build the quantita-
tive model (training set), and the remaining molecules 

were used to test the performance of the established 
model (test set) for both activities. Additionally leave-
one-out protocol and Y-randomization were carried out 
to study the stability of the chosen training sets. 

Molecular descriptors
All modeling studies were performed using the SYBYL-
X 2.0 molecular modeling package (Tripos Inc., St. 
Louis, USA) running on a windows 7, 32 bits worksta-
tion. Three-dimensional structures were built using 
the SKETCH option in SYBYL. All compounds were 
minimized under the Tripos standard force field [14] 
with Gasteiger-Hückel atomic partial charges [15] by 
the Powell method with a convergence criterion of 
0.01  kcal/mol  Å. To describe the compound structural 
diversity and in order to obtain validated QSAR models, 
the optimized structures were saved in sdf format and 
transferred to PaDEL server [16] to calculate topologi-
cal descriptors encode the chemical properties of each 
compound. Among the calculated descriptors only three 
descriptors have been chosen as relevant to describe each 
studied inhibitory activity (Table 2).

Methodology
After the calculation of all descriptors from PaDEL 
server, a genetic function algorithm (GFA) analysis for 
variable selection was applied on the molecular descrip-
tors’ set to choose only the appropriate ones to describe 
each activity [17]. Subsequently, the number was reduced 
to three, which is reasonable considering the number of 
molecules used to build the models according to the rule 
of five [18]. Then, those three chosen descriptors were 
used as input to perform an MLR study on each activ-
ity until a valid model including: the critical probability 
p value <0.05 for all descriptors and for the complete 
model, the Fisher criterion, the determination coeffi-
cient, the mean squared error, the multi-colinearity test, 
and the internal, external validations, in addition to the 
Y-randomization. Later, those descriptors were also 
exploited to generate the applicability domain to describe 
the chemical space for each model.

HN

R2

R1

Fig. 1  The chemical structure of the studied compounds
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Table 1  Chemical structures and anti-cancer activities of substituted 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amine derivatives

No R1 R2 pIC50 pIC50 No R1 R2 pIC50 pIC50

PIM1 PIM2 PIM1 PIM2

1a N
S

N

H2N 6.505 5.567 14
N

N

N

O

S

N
N

H2N 8.301 7.921

2b N
S

N
N

H2N 6.787 5.996 15

NHN

N
S

N
N

H2N 8.699 8.000

3 N
S

N
N

HN 6.565 5.788 16

NHN

N
S

N
N

H2N 9.000 8.222

4 N
S

N
N

S 5.548 4.658 17

NHN

N
S

N
N

H2N 8.397 7.745

5a F

F

S

N
N

H2N 6.752 6.458 18

NO

S

N
N

H2N 7.769 7.658

6b

NH2N

S

N
N

H2N 6.063 6.010 19

NO

S

N
N

H2N 8.154 8.000

7
NN

S

N
N

H2N 7.318 6.983 20

NO

S

N
N

H2N 7.823 7.387

8a

NN

O

S

N
N

H2N 7.795 7.229 21

NO

S

N
N

H2N 7.387 6.943

9a,b

NN

S

N
N

H2N 7.619 7.432 b22

N

N

O

S

N
N

H2N 7.677 7.553

10

NN
H

S

N
N

H2N 7.920 7.678 a,b23

N

N

O

S

N
N

H2N 8.096 7.770

1 b1

NN
H

S

N
N

H2N 6.962 6.644 a24

N

N

O

S

N
N

H2N 7.958 7.602

12

N

N

H2N

S

N
N

H2N 6.847 6.717 25

N

NO
S

N
N

H2N 6.581 5.889

13

N

N

N
H

S

N
N

H2N 7.958 7.377

a, b  Are the test sets for PIM1 and PIM2 inhibitory activities respectively
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Statistical analysis
In the present study XLSTAT version 2013 [19] was used to 
perform multiple linear regression (MLR), which is a statis-
tical method aimed to establish a mathematical relationship 
between a property of a given system and a set of molecu-
lar descriptors that encode chemical information. A genetic 
function algorithm tool was used for variables selection 
[17], which is a mathematical technique served to reduce 
the number of variables used in the data set, as well as to 
select only the pertinent ones, in which mutation probabil-
ity was 0.5 the smoothing parameter was 1.0, and cross over 
probability was 1.0. GFA in this study serves to select signifi-
cant molecular descriptors from vast number of variables.

Validation
The main objective of a QSAR study is to obtain a model 
with the highest predictive and generalization abilities. 
Therefore, two principals (internal validation and external 
validation) were carried out in order to evaluate the predic-
tive power of the developed QSAR models. For the internal 
validation, the leave-one-out cross-validation process (Q2) 
was used to evaluate the stability and the internal capabil-
ity of the proposed models in the present study. A high Q2 
value means a high internal predictive power of a QSAR 
model and a good robustness. Nevertheless, the study 
of Globarikh [20] indicated that there is no correlation 
between the value of Q2 for the training set and predictive 
ability of the test set, revealing that the Q2 is still inadequate 
for a reliable estimate of model predictive power for all 
new chemicals. Thus, the external validation regards the 
only way to determine both the generalizability and the 
true predictive power of QSAR models for new chemicals. 
For this reason, the statistical external validation process 
was applied to the developed models using a test set as 
described by Globarikh and Tropsha; Roy and Roy [20–22].

Y‑randomization test
The obtained models were further validated by the 
Y-Randomization method [23]. In which the depend-
ent vector (pIC50) is randomly shuffled many times and 

after every iteration, a new QSAR model is developed. 
The new QSAR models are expected to have lower Q2 
and R2 values than those of the original models. This 
technique is carried out to eliminate the possibility of 
the chance correlation. If higher values of the Q2 and R2 
are obtained, it means that an acceptable QSAR cannot 
be generated for this data set because of the structural 
redundancy and chance correlation.

Results and discussion
Data set for analysis
A QSAR study was carried out for the first time on 
twenty-five of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amine 
derivatives, in order to establish quantitative relation-
ships between their structures and their PIM1 and PIM2 
inhibitory activities. The three selected descriptors for 
each model are shown in Table 2.

Multiple linear regressions MLR
Based on the selected molecular descriptors two math-
ematical linear models were proposed to predict quanti-
tatively the physicochemical effects of substituents on the 
PIM1 and PIM2 inhibitory activities using linear regres-
sion. In total, nineteen molecules were placed in the 
training set to build the QSAR models, and the six mol-
ecules composed the test set,

For the PIM1 inhibitory activity the best linear model 
contains three molecular descriptors: GATS8v, AATS0p 
and maxHBint8 and it is represented by the following 
equation:

N = 19, R = 0.87, R2 = 0.726, Q2 = 0.60, MSE = 0.221, 
F = 16.04, P < 0.0001.

For the PIM2 inhibitory activity the best linear model 
contains three molecular descriptors: GATS8v, AATS3i 
and VR1_Dzm and it is represented by the following 
equation:

N = 19, R = 0.91, R2 = 0.825, Q2 = 0.73, MSE = 0.184, 
F = 23.85, P < 0.0001.

R2 is the coefficient of determination, F is the Fisher 
statistic and MSE is the mean squared error. Higher 
coefficient of determination and lower mean squared 
error indicate that the model is more reliable. A P 
smaller than 0.05 means that the obtained equation is 

Y = a0 +

n∑

i=1

aixi.

(1)
pIC50 = 6.92− 5.84 × (AATS0p)− 0.27× (maxHBint8)

+ 1072× (GATS8v)

(2)
pIC50 = −32.31+ 12.8× (GATS8v)+ 0.16

× (AATS3i)− 8.48× (VR1_Dzm)

Table 2  The three relevant molecular descriptors used 
in each best QSAR model for each activity

Selected descriptors for PIM1 
inhibitory activity

Selected descriptors for PIM2 
inhibitory activity

AATS0p Autocorrelation GATS8v Geary autocorrelation 
of lag 8 weighted by 
van der Waals volume

maxH-
Bint8

Atom type electrotopo-
logical state

AATS3i Autocorrelation

GATS8v Geary autocorrelation of 
lag 8 weighted by van 
der Waals volume

VR1_Dzm Barysz matrix
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statistically significant at the 95% level. The obtained 
model were cross-validated by their applicable Q2 values 
(Q2 =  0.60 and 0.73) respectively, using the leave-one-
out (LOO) method. A value of Q2 greater than 0.5 is the 
basic criteria to qualify a model as valid [20].

The multi-collinearity between the above three 
descriptors for each model was detected by calculating 
their variation inflation factors VIF as shown in Table 3. 
Accordingly, it has been found that the descriptors used 
in the proposed models have very low-inter-correlation. 
The VIF [24] was defined as 1/(1−R2), where R is the 
coefficient of correlation between one descriptor and all 
the other descriptors in the proposed model. A VIF value 
greater than 5.0 indicates that the model is unstable; 
a value between 1.0 and 4.0 indicates that the model is 
acceptable.

The correlations of the predicted and observed activi-
ties are illustrated in Fig.  2. The descriptors proposed 
in Eqs.  (1) and (2) by MLR are then used as the input 
parameters to generate the applicability domains (AD) 
for both models.

Applicability domain
The utility of a QSAR model is its accurate prediction 
ability for new chemical compounds. So, once the QSAR 
model is built, its domain of applicability (AD) must be 
defined. A model is regarded valid only within its train-
ing domain and only the prediction for new compounds 
falling within its applicability domain can be considered 
reliable and not model extrapolations. The most common 
method to define the AD, it is based on the determina-
tion of the leverage value of each compound [22]. The 
Williams plot [the plot of standardized residuals versus 
leverage values (h)] is used in the present study to visual-
ize the AD of the QSAR model.

where the xi is the descriptor vector of the considered 
compound, X is the descriptor matrix derived from the 
training set descriptor values, the threshold is defined as:

hi = xTi (X
TX)−1xi

h∗ =
3(k + 1)

n

Table 3  Multi-colinearity test

Variables PIM1 inhibitory activity PIM2 inhibitory activity

AATS0p maxHBint8 GATS8v GATS8v AATS3i VR1_Dzm

VIF 2.376 2.343 2.081 1.810 1.960 1.168

5

6

7

8

9

5 6 7 8 9

pI
C

50

Pred(pIC50) 

Pred(pIC50 PIM 1) / pIC50 

4

5

6

7

8

9

4 5 6 7 8 9

pI
C

50

Pred(pIC50) 

Pred(pIC50 PIM 2 ) / pIC50 

Fig. 2  Correlations of observed and predicted activities (training set in black and test set in red) values calculated using MLR models
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where n is the number of compound in the training set, k 
is the number of the descriptors in the proposed model, a 
leverage (h) greater than the threshold (h*) indicates that 
the predicted response is an extrapolation of the model 
and, consequently, it can be unreliable.

The Williams plots of the presented MLR models are 
shown in Figs.  3 and 4, the applicability domains are 
established inside a squared area within ±2 standard 
deviation and a leverage threshold  h* of 0.63 for both 
models.

As shown in the developed Williams plot on the 
selected descriptors for predicting the PIM1 inhibitory 
activity the majority of compounds from the data set are 
in this area, except one (compound 4) from training set 
exceeds the threshold and it is considered as an outlier 
compound. This erroneous prediction could probably be 
attributed to the presence of sulfur on the R1 substituent 
whereas; the majority of compounds have an NH at this 
position.

While for the developed Williams plot on the selected 
descriptors for predicting the PIM2 inhibitory activity 
the majority of compounds from the data set are fallen 
within the AD, except two molecules: (compound 2) in 
training set exceeds the threshold, so, it is considered 
as an outlier compound. Here, this erroneous predic-
tion could probably be attributed to the unsubstituted R2 
whereas; the majority of compounds are substituted at 
this position.

Y‑randomization
The Y-randomization method was carried out to validate 
the MLR models. Several random shuffles of the depend-
ent variable (pIC50) were performed then after every 
shuffle, a QSAR was developed and the obtained results 
are shown in Table 4. The low Q2 and R2 values obtained 
after every shuffle indicate that the good result in our 

original MLR models are not due to a chance correlation 
of the training set.

External validation
To test the prediction ability of the obtained MLR mod-
els, it is required the use of a test set for external valida-
tion. As long as, the models generated on the training set 
using 19 of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amine 
derivatives were used to predict the PIM1 and PIM2 
inhibitory activities of the remaining molecules. The 
parameters of the performance of the generated models 

Fig. 3  Williams plot for the training set and external validation for the 
PIM1 inhibitory activity of compounds, listed in Table 1 (h* = 0.63 and 
residual limits ±2)

Fig. 4  Williams plot for the training set and external validation for the 
PIM2 inhibitory activity of compounds, listed in Table 1 (h* = 0.63 and 
residual limits ±2)

Table 4  Q2 and  R2  values after  several Y-randomization 
tests

Iteration MLR (PIM1) MLR(PIM2)

Q2 R2 Q2 R2

1 −0.12 0.32 −0.48 0.82

2 −0.32 0.09 −0.09 0.03

3 −0.60 0.09 −0.14 0.33

4 −0.27 0.24 0.26 0.24

5 −0.19 0.12 0.31 0.07

6 −0.53 0.21 0.43 0.09

7 −0.34 0.11 0.45 0.19

8 −1.59 0.12 0.48 0.20

9 −0.77 0.09 0.54 0.23

10 −0.19 0.20 0.17 0.29

Table 5  The statistical results of  MLR models with  valida-
tion techniques

Method/parameter R R2 Q2 R2 test MSE

MLR(PIM1) 0.87 0.726 0.60 0.84 0.222

MLR(PIM2) 0.91 0.825 0.73 0.74 0.184
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Table 6  Predicted values and calculated h of pIC50 (µM) according to different methods

Compound Molecular structure Pubchem CID Pred (PIC50) for PIM1 h Pred (PIC50) for PIM2 h

1 68328588 7.782 0.122 7.455 0.213

2 45377352 10.367 0.906 9.497 1.117

3 68328129 7.316 0.352 7.243 0.162

4 68327929 8.332 0.102 7.513 0.330

5 68328158 8.311 0.074 7.072 1.109

6 68328259 8.434 0.113 7.958 0.106

7 68328426 8.347 0.089 8.026 0.151

8 68328539 8.137 0.387 6.699 0.111

9 68328547 8.282 0.1023 7.594 0.0964

10 68328676 8.138 0.0739 7.068 0.7669
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are shown in Table 5. It can be seen clearly that the gen-
erated models are stable and predictable statically.

Both obtained models for predicting the PIM1 and 
PIM2 inhibitory activities have high coefficients of deter-
mination for training (R2 =  0.726 and 0.825) and test-
ing sets (test R2 = 0.84 and 0.74) respectively. Also high 
Cross-validation coefficients (Q2 = 0.60 and 0.76). So the 
proposed QSAR models can be used as primary step for 
screening and designing newly PIM1 and PIM2 inhibi-
tors derived from 5-(1H-indol-5-yl)-1,3,4-thiadiazol.

Screening of 5‑(1H‑indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑amines 
analogues and prediction of their PIM1 and PIM2 
inhibitory activities
Overall, this study can be utilized to screen databases to 
look for new PIM1 and PIM2 inhibitors as well as to pre-
dict their inhibitory activities. Therefore, the built models 
were used to screen the Pubchem database, by search-
ing compounds had 80% similarity with the most active 
compound of the studied series (compound 16). Twelve 
compound were gathered as shown in Table 6 and their 
predicted values were calculated in addition to their lev-
erages (h) to check if they fall in the AD of the proposed 
models (Table 6; Figs. 5, 6).

For the proposed model to predict the PIM1 inhibi-
tory activity, almost of the compounds have h  <  h*, so 
their predicted values are regarded reliable except for 
compound 45377352 which has a leverage exceeds the 
threshold (h = 0.90).

While for the proposed model to predict the PIM2 
inhibitory activity, it is found that among the twelve 
chemicals, only four were found to have h  >  h*, 
45377352, 68328158, 68328676 and 68356801 respec-
tively, so, expect for those molecules, the PIM2 predicted 
inhibitory activity of the eight remaining 5-(1H-indol-
5-yl)-1,3,4-thiadiazol analogues is regarded reliable.

Moreover, the 5-(1H-indol-5-yl)-1,3,4-thiadiazol ana-
logues were analyzed for their various properties, Log 

P, H-bond acceptor (H–A), H-bond donor (H–D), Polar 
surface area (P.S) (A2), Rotatable Bonds (R.B) and Molec-
ular weight (MW) (g/mol), results shown that they fol-
low the Lipinski’s rule of five for oral bioavailability [25]. 
Therefore, there are regarded to be acceptable as lead 
molecules to inhibit the PIM1 and PIM2 kinases.

Conclusions
To predict the PIM1 and PIM2 inhibitory activities of a 
series substituted 5-(1H-indol-5-yl)-1,3,4-thiadiazol-
2-amines, linear technique was used to propose useful 
mathematical models to establish quantitative relation-
ships between them and a set of topological descriptors. 
Both proposed linear models MLR exhibit high determi-
nation coefficients, good stabilities and prediction abili-
ties, using only three descriptors for each model. Such as 
the accuracy and predictability of the proposed models 
were checked based on the domain of applicability (AD), 
the Y-randomization and by comparing key statistical 
indicators, such as the R or R2 of the obtained models, as 
shown in Table 7. To validate these results, a test set was 
used, as shown in Table 5.

Table 6  continued

Compound Molecular structure Pubchem CID Pred (PIC50) for PIM1 h Pred (PIC50) for PIM2 h

11 68328891 8.329 0.0860 8.244 0.2909

12 68356801 8.745 0.2543 8.137 0.9468

0 0.2 0.4 0.6 0.8 1
1
2
3
4
5
6
7
8
9
10
11
12

Leverage

co
m
po

un
d

Fig. 5  Leverage values of the screened compounds from pubchem 
database for the PIM1 inhibitory activity, listed in Table 7 (h* = 0.63)
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Finally, we concluded that the topological descriptors 
used are able to encode the structural features of the 
studied compounds. Obviously, the obtained results from 

each model on this series of compounds were used as pri-
mary step for predicting the PIM1 and PIM2 inhibitory 
activity of 5-(1H-indol-5-yl)-1,3,4-thiadiazol analogues.
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