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Abstract 

Background:  A series of rare-earth bisphthalocyanines of praseodymium, samarium and gadolinium bearing 
5-bromo-2-thienyl substituents were prepared for the first time.

Results:  Three bis[octakis(5-bromo-2-thienyl)] rare-earth metal(III) bisphthalocyanine complexes (Pr, Sm, Gd) were 
synthesized for the first time. The new compounds were characterized by UV–vis, NIR, FT-IR, mass spectroscopy and 
thermogravimetry as well as elementary analysis and electrochemistry. Production of singlet oxygen was also esti-
mated using 9,10-dimethylanthracene method.

Conclusions:  The bromine substituent causes significant changes in molecule paramagnetism, singlet oxygen pro-
duction, HOMO position and spectral characteristics. The compounds in solutions exist in two forms (neutral and/or 
reduced) depending on the solvent and rare-earth metal. Moreover, the compounds exhibit much increased stability 
under acid conditions compared with non-brominated derivatives.

Keywords:  Rare-earth bisphthalocyanines, UV–vis spectroscopy, NIR spectroscopy, Singlet oxygen production, 
Reduction, Cyclic voltammetry, Acid stability, Thermogravimetry
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Background
Double-decker rare-earth phthalocyanines were firstly 
reported by Kirin [1] in 1965. Since then, they found a lot 
of applications. Among them are colour and electrochro-
mic displays [2], gas sensors [3], field-effect transistors [4] 
and nonlinear optical materials [5]. Widely studied are 
also their magnetic [6] and conducting properties [7]. For 
these applications, many unsubstituted and substituted 
derivatives were prepared and evaluated to date. Thio-
phene moieties as strong donors are very often adopted 
for tailoring electronic properties of many classes of 
compound studied for applications in organic electronics 
[8]. Recently, a series of three thiophene-substituted rare-
earth bisphthalocyanines of gadolinium, praseodymium 

and samarium were studied by our group [9]. It was found 
that the compounds were very sensitive to the presence 
of an acid yielding metal-free phthalocyanines irrevers-
ibly. This unexpected instability can limit their use for 
organic electronics. Our working hypothesis was that 
the acid stability should be increased if suitable group 
is attached to the 2-position on the thiophene cycle. For 
this purpose, a bromo substituent was introduced to the 
phthalocyanine scaffold. The aim of this study was to 
evaluate the effect of this modification on their physical, 
photo-physical and electrochemical properties.

Experimental
General
All starting materials were obtained from Aldrich and 
Penta, and were used without further purification. 
Unsubstituted phthalocyanines were prepared according 
to the literature procedure [1].
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The ultraviolet–visible (UV–vis) spectra were meas-
ured within the range of 300–900 nm on a UNICAM UV/
VISIBLE Spectrophotometer, Helios Beta. The near infra-
red (NIR) spectra were measured within 800–2100  nm 
on a PerkinElmer Lambda 1050 UV/VIS/NIR spectrom-
eter. FT-IR spectra were recorded on a Nicolet 6700 
FT-IR spectrometer. Thermogravimetric analyses were 
performed using a Mettler Toledo TGA/DSC 1 STARe 
System in a 70 ll alumina crucible. A small amount of 
the test compound (6–7 mg) was weighed into the meas-
uring crucible and heated using a controlled tempera-
ture program between 25 and 700  °C using a gradient 
of 10  °C min−1. A flow of nitrogen (about 20 ml min−1) 
was used as a protective gas. During the heating process 
weight-curves were recorded over the complete tem-
perature range. Elemental analyses were obtained using 
a FISONS EA 1108 automatic analyser. Matrix-assisted 
laser desorption/ionization time-of-flight mass spectra 
(MALDI-TOF) were measured on a MALDI mass spec-
trometer LTQ Orbitrap XL equipped with nitrogen laser. 
Positive-ion and linear mode of the compounds were 
obtained in trans-2-[3-(4-tert-butylphenyl)-2-methyl-
2-propenylidene]malononitrile matrix for 2 and 3 and 
2,5-dihydroxybenzoic acid matrix for 4 using nitrogen 
laser accumulating 10 laser shots. Electrochemical meas-
urements were carried out in 1,2-dichloroethane con-
taining 0.1  M Bu4NPF6. Cyclic voltammetry (CV) and 
rotating disk voltammetry (RDV) were used in a three 
electrode arrangement. The working electrode was plati-
num disk (2  mm in diameter) for CV and RDV experi-
ments. As the reference and auxiliary electrodes were 
used saturated calomel electrode (SCE) separated by a 
bridge filled with supporting electrolyte and a Pt wire, 
respectively. All potentials are given vs. SCE. Voltam-
metric measurements were performed using a potentio-
stat PGSTAT 128N (Metrohm Autolab B.V., Utrecht, The 
Netherlands) operated via NOVA 1.11 software.

Preparation of bis[octakis‑(5‑bromo‑2‑thienyl)
phthalocyaninato] rare‑earth metal(III) phthalocyanines 
(2–4)
The starting 4,5-bis(5-bromo-2-thienyl)phthalonitrile (1) 
was prepared by bromination of 4,5-bis(2-thienyl)phtha-
lonitrile using N-bromosuccinimide in good yield. All the 
investigated bisphthalocyanines were synthesized from 1 
by a two-step, one-pot reaction (Scheme  1). In the first 
step, the starting nitrile 1 was refluxed in n-pentanol with 
metal lithium under nitrogen. The resulting dilithium 
phthalocyanine was without isolation reacted with anhy-
drous rare-earth metal acetate dissolved in anhydrous 
DMF under reflux. The products were purified by flash 
chromatography using cellulose as the adsorbent and 
eluted first with ethyl-acetate and then with THF. The 

yields of pure 2–4 were 16–34%. Synthetic procedures 
including basic characterizations are given in Additional 
files 1 and 2.

Results and discussion
Characterization
The synthesized complexes 2–4 were characterized by 
several spectroscopic techniques—UV–vis, NIR, FT-IR, 
MALDI-TOF, thermogravimetry and elemental analy-
sis. Proton NMR were measured in CDCl3 or THF-d8. 
No analysable signals were obtained, even by using a 
published trick [10] with oxidation with a large excess of 
bromine. The reduced forms (after addition of NaBH4 in 
THF-d8) also showed paramagnetism.

In these sandwiches (neutral compounds), one phth-
alocyanine ring is the classical dianion and the second 
one is the radical anion with charge −1. With a trivalent 
rare-earth metal cation, they form a neutral compound. 
Generally, in solutions they exist in two forms—a neutral 
and a reduced form. The distribution depends (Addi-
tional file  3) on the polarity and basicity of the solvent. 
The exact form in solutions are discussed in respective 
sections of the article.

UV–vis spectral characteristics
UV–vis spectra of 2–4 in DMF are presented in Fig.  1. 
They show typical features for bisphthalocyanines—a 
Soret band appearing at ca. 385  nm and two Q-bands, 
one located at wavelength of about 660 nm and the other 
at 710–720 nm. This is in agreement with reported spec-
tral behaviour for octa-2,2,3,3-tetrafluoropropoxy rare-
earth phthalocyanines [11] and it corresponds to reduced 
forms of bisphthalocyanines.

UV–vis spectra of 4 in THF, toluene, DMF and CHCl3 
are shown in Fig.  2. In THF and toluene is present an 
additional peak at ~700 nm (more pronounced for tolu-
ene). This peak is characteristic of a neutral form. Also, 
a new broad band appeared in 500–600 nm wavelength 
area. It corresponds to π-radical cation of the complex. 
Similar spectra were obtained for 2 and 3 (Additional 
file 3).

Figure 3 shows a typical change in the shape of spectra 
upon oxidation of 4 with bromine in CHCl3. The spectra 
are dependent on the amount of used Br2. One Q-band 
with maximum at 704 nm was detected after addition of 
10 μl 0.01 M Br2 to 2 ml of 5 × 10−6 M solution (molar 
ratio 1:10) of 4. It is apparent that the mild oxidation 
changed the bisphthalocyanine molecule from a reduced 
form to a neutral form. With much higher Br2 concentra-
tion (20 μl 0.44 M, molar ratio ≈1:900) a large decrease in 
the Q-band intensity occurs. The Q-band is again shifted 
to longer wavelength and very broad peak appeared at 
about 750 nm.
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NIR spectroscopy
Figure 4 shows NIR spectra of reduced and neutral forms 
of 2–4 in toluene at 50  mg  l−1. Reduced forms were 
formed by addition of a slight excess of triethylamine 
and neutral forms by addition of acetic acid. The samples 
were put in the dark for 24 h in order to ensure complete 
conversion to a desired form. The neutral forms of 2–4 
show clearly a peak located at ~930 nm corresponding to 
red vibronic transition 1eg(π) → a1u(π*) from the SOMO-
to-LUMO orbital [12]. The peak is very little dependent 
on the rare-earth metal. The second well resolved peak 

is at 1458–1474 nm. The most intensive signal is a broad 
absorption in 1600–2100  nm region, the intensity and 
λmax is increasing with the size of the central metal.

The shape of the spectra changed completely upon 
reduction. The peaks characteristic for neutral form 
disappeared and only peaks of triethylamine at  ~1400, 
1700–1800 nm were observed [13].

Acid stability
The analogous bisphthalocyanines bearing thiophene 
moieties have shown a very limited stability in dilute 
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acids [9]. The next experiments were made to clarify if 
addition of Br as a heavy bulky substituent in 2-position 
on the thiophene cycle would increase acid stability. Ace-
tic acid was chosen for stability tests due its higher com-
patibility with many solvents.

In toluene, both forms of 4 are present and it is thusly 
most suitable for the acid stability test. 5 microlitres of 
acetic acid (AcOH) was added to 2  ml toluene solution 
of 4 (Fig.  5). The spectra were recorded in certain time 
periods until constant spectra were obtained. After addi-
tion of AcOH to the sample, a decrease of the peak inten-
sity at 660  nm was found. Proportionally, the peak at 
710 nm raised by about 40%. The reaction is completed 
within 30 min and corresponds to the formation of a neu-
tral form. After addition of slight excess of triethylamine 
(10  μl) to the neutral form, the spectrum reverts back 
to a reduced form (more than 95% of the initial values 

of curve 5 in Fig. 5). The proof that the reaction with an 
acid is fully reversible is indicated also by sharp isosbestic 
points located at 407, 636 and 687 nm, respectively.

Similar behaviour was confirmed for 2 and 3 (Additional 
file  3). The difference between the series lied only in the 
rate of conversion from the reduced to the neutral form. 
While the reaction for 3 and 4 is completed within 30 min, 
the reaction of 2 took several hours. This behaviour cor-
responds well with potential of first oxidation (see Table 2).

Analogous experiment was performed with Gd ana-
logue with non-substituted thiophene (GdPc-thiof—
Fig. 6). Upon addition of AcOH totally different behaviour 
was found. The Q-band was splitted to two signals of 
nearly equal intensity indicating formation of a metal-
free phthalocyanine. The full demetelation occurred in 
about an hour. The addition of triethylamine has no sig-
nificant effect on the metal-free phthalocyanine.

From the comparison, it is apparent that the bromo 
substituent is sufficiently capable to stabilize the com-
pounds effectively and confirmed our hypothesis men-
tioned in the introduction of the article.

Infra‑red spectroscopy
The FT-IR spectra of 2–4 are shown in Additional file 4. 
In the spectra, there are many characteristic peaks which 
are only minimally dependent on the rare-earth metal. 
The huge peak appearing at 3400–3500  cm−1 is O–H 
vibration from residual humidity present in KBr. The 
peaks located at about 3095, 2923 and 2852  cm−1 are 
stretching C–H vibrations of thiophene substituent at the 
periphery. There is no sharp peak at 2250 cm−1 indicat-
ing that the prepared samples were sufficiently purified 
from the starting nitrile. The peak at 1610 cm−1 is typical 
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Fig. 1  UV–vis spectra of rare-earth bisphthalocyanines 2–4 in DMF at 
10 mg l−1
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for phthalocyanines and corresponds to the C=C vibra-
tion of the benzene ring. The peaks at 1477, 1446, 1382, 
1313, 1284, 1198, 1089, 984, 967, 902, 883, 760, 749 and 
693 cm−1 characterize stretching and bending vibrations 

of benzene, pyrrole, isoindole and thiophene. The peak at 
795 cm−1 is typical for C–Br vibration and it is shifted by 
20  cm−1 to longer wavenumber compared to 5-methyl-
2-bromothiophene [14].
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Thermogravimetry
Figure  7 shows a thermal loss of 2–4 during heating in 
nitrogen atmosphere. The compounds show very similar 
behaviour during the heating process. The compounds 

are stable up to about 280 °C, then consequent slow deg-
radation occurs. The decrease between 280 and 320 °C is 
more rapid for 4 then for 2 or 3. After 320 °C the degra-
dations have nearly the same progress for all compounds.
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Singlet oxygen production
Phthalocyanines belong to a large group of the so-called 
photosensitizers. Photosensitizers are materials which 
are capable to generate singlet oxygen (1O2) from every-
where-present triplet oxygen upon illumination with the 
light of suitable wavelength. The ability to generate 1O2 is 
characterized by singlet oxygen quantum yield Φ.

The singlet oxygen quantum yield was determined 
according to a reported procedure using 9,10-dimethy-
lanthracene (DMA) [15]. The test compound was dis-
solved in DMF (1 mg l−1). The neutral form was prepared 
in  situ by addition of diluted bromine. The decrease in 
absorbance was monitored using a UNICAM UV/VISI-
BLE Spectrophotometer, Helios Beta at 381 nm. The sam-
ples were irradiated with a red laser light (Maestro CCM, 
λmax = 661 nm) to decrease the absorbance of DMA solu-
tion to ca. 0.2–0.3. The measurements were triplicated 
and no degradation of phthalocyanines during irradiation 
was observed. The obtained reaction half-times were cor-
rected to the unit absorbance of the sample and related to 
the zinc phthalocyanine (Φ = 0.56) [16].

The estimated values of Φ for reduced and neutral 
forms are summarized in Table 1. The spectrum maxima 
for unsubstituted analogous compounds are also given. 
Surprisingly, Φ values for 2–4 are much smaller than 
those found for thiophene-substituted rare-earth bisph-
thalocyanines [9]; for compounds 2 and 3 are comparable 
with unsubstituted rare-earth bisphthalocyanines (Φ less 
than 0.01) [17]. Only 4 show some production of singlet 
oxygen. The difference between Φ of reduced and neutral 
compounds is manifested only for 4, the value increased 

from 0.03 to 0.08. The oxidized forms were not measured 
due to a very small absorbance of oxidized state of 2–4 at 
the adopted concentration.

Electrochemical measurements
The electrochemical characterization of described phth-
alocyanines was focused on first oxidation (reduction) 
potentials (see Table  2) reflecting the effect of metal 
centre as well as substitution moiety. The compounds in 
dichloroethane solution are likely to be in reduced form 
(Pc−). The first oxidation occurs from +0.24 to +0.32 V 
vs. ref yielding neutral Pc0. The easiest oxidation was 
observed for compound 4. This is probably caused by 
structural effect of the Pr atom which has largest size in 
comparison with other two metals. In addition to this, 
the oxidation of all three compounds proceed in two 
reversible one-electron processes within the potential 
window. The second oxidation potential is shifted from 
first potential by 0.44  V to more positive values and is 
independent on the metal ion. When comparing oxida-
tion potentials of presented compounds with non-bro-
minated analogues [9], the potential of first oxidation is 
about 100 mV shifted towards more positive values due 
to electron withdrawing effect of bromo substituent 
(Fig. 8). 

The first reduction potentials range from −0.74 to 
−0.76  V vs. ref., hence there are just small differences 
between the first reduction potentials within the series. 
Moreover, more reduction processes were observed but 
they almost merge into one. Again, when comparing first 
reduction potentials with previously published data [9, 

Table 1  Spectral and photochemical data for phthalocyanines 2–4 in DMF

Compound Reduced form Neutral form Unsubstituted bisphthalocyanines

Q-bands (λmax, nm, log ε) Φ Φ Q-bands (λmax, nm, log ε) Φ

2 659 (5.41)
723 (4.95)

<0.01 <0.01 635 (4.85)
672 (4.93)

<0.01

3 664 (5.45)
710 (4.97)

<0.01 <0.01 628 (4.84)
671 (4.94)

<0.01

4 658 (5.27)
706 (5.05)

0.03 ± 0.01 0.08 ± 0.01 624 (4.55)
671 (4.67)

<0.01

Table 2  Electrochemical data of 2–4

a  E1/2 (ox1), E1/2 (ox2), E1/2 (red1) are half-wave potentials of the first (second) oxidation (reduction) measured by RDV
b  EHOMO/LUMO = −[E1/2 (ox1/red1) + 4.4] eV. All potentials are given vs. SCE
c  ΔE = E1/2 (ox1) − E1/2 (red1), electrochemical gap

Compound E1/2 (ox1) (V)a E1/2 (ox2) (V)a E1/2 (red1) (V)a EHOMO (eV)b ELUMO (eV)b ΔE (eV)c

2 0.32 0.76 −0.76 −4.72 −3.64 1.08

3 0.27 0.71 −0.76 −4.67 −3.64 1.03

4 0.24 0.68 −0.74 −4.64 −3.66 0.98
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18], there are not big differences, this means that varia-
tion in the substitution influences more oxidation than 
reduction centre.

Conclusions
Three rare-earth metal bisphthalocyanines bearing 
5-bromo-2-thienyl groups were synthesized for the first 
time. Their purification was achieved by flash chroma-
tography using cellulose as an adsorbent. The prepared 
complexes exhibit good solubility in many organic sol-
vents such as DMF, THF, chloroform, dichloromethane 
and acetone. The compounds were characterized by UV–
vis, NIR, MALDI, FT-IR, thermogravimetry and elemen-
tal analysis.

Two forms of studied compounds were identified in 
solutions. The first form is a reduced Pc which has two 
maxima at 660 and 720 nm. This form has no signal in NIR 
area. The second form is a neutral form with one maxi-
mum located at ~700 nm. There are several characteristic 
peaks in NIR area. The distribution of the forms is depend-
ent on the solvent (polarity and basicity) and the central 
metal. The compounds were found in reduced forms in 
most solvents. Transformation of the reduced form to a 
neutral can be achieved either by addition of small amount 
of acid (AcOH) or an oxidant like Br2. With increased con-
centration of Br2, the compounds are further oxidized to 
Pc+ and the spectra are red shifted to about 750 nm. Our 
hypothesis that the attachment of Br atom on the thio-
phene cycle should increase the acid stability was success-
fully confirmed. No degradation in diluted acids was found 
in contrary to non-brominated analogues.

Compared to thiophene-substituted rare-earth phth-
alocyanines a significant decrease in quantum yield of 

singlet oxygen Φ was found. This is in good agreement 
with high degree of paramagnetism found during NMR 
experiments. The electrochemical investigation of stud-
ied compounds has shown that the variation of central 
metal does not bring significant changes in the first oxi-
dation (reduction) and HOMO (LUMO) respectively. 
Anyway, in comparison to previously published electro-
chemical data [9, 18], the substitution influences more 
oxidation than reduction (more HOMO than LUMO).
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