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Abstract 

Ligustrazine-vanillic acid derivatives had been reported to exhibit promising neuroprotective activities. In our continu-
ous effort to develop new ligustrazine derivatives with neuroprotective effects, we attempted the synthesis of several 
ligustrazine-vanillic acid amide derivatives and screened their protective effect on the injured PC12 cells damaged by 
CoCl2. The results showed that most of the newly synthesized derivatives exhibited higher activity than ligustrazine, 
of which, compound VA-06 displayed the highest potency with EC50 values of 17.39 ± 1.34 μM. Structure-activity 
relationships were briefly discussed.
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Background
Ischemic stroke is one of the leading causes of death and 
disability in the world [1–3]. It is clear that even a brief 
ischemic stroke may trigger complex cellular events that 
ultimately lead to the neuronal cell death and loss of neu-
ronal function [1, 4, 5]. Although remarkable progress 
has been made in treating stroke, effective approaches 
to recover damaged nerve are not yet to be found [6–9]. 
Therefore, it is necessary to develop new generation of 
neuroprotective agents with neural repair-promoting 
effect.

Ligustrazine (tetramethylpyrazine, TMP) (Fig.  1) is a 
major effective component of the traditional Chinese 
medicine Chuanxiong (Ligusticum chuanxiong hort), 
which is currently widely used in clinic for the treatment 
of stroke in China. It has been reported to show benefi-
cial effect on ischemic brain injury in animal experiments 
and in clinical practice [10–14].

Meanwhile previous studies showed that many of aro-
matic acids, such as vanillic acid, protocatechuic acid, sal-
icylic acid, exhibited interesting neuroprotective activity 
[15–19]. In our previous effort to develop new neuropro-
tective lead compounds, inspired by the potent bioactivi-
ties of TMP and aromatic acids on neuroprotection, we 
designed and synthesized several series of ligustrazine 
derivatives by incorporation of ligustrazine with aromatic 
acids. The neuroprotective activity detection revealed 
that some compounds presented potent protective effects 
on injured differentiated PC12 cells, of which T-VA 
(3,5,6-trimethylpyrazin-2-yl)methyl3-methoxy-4-((3,5,6-
trimethylpyrazin-2-yl)methoxy)benzoate) (Fig.  1) exhib-
ited high potency with EC50 values of 4.249 µM [20–22]. 
Meanwhile, recent research has demonstrated that T-VA 
exerted neuroprotective in a rat model of ischemic stroke 
[23].

In continuation of our research, we decided to under-
take a study of the ligustrazinyl amides, because amides 
relatively have metabolic stability when compared to 
ligustrazinyl esters [24]. In this study, we reported the 
design, synthesis of the novel T-VA amide analogues 
containing different types of amide fragments, as well 
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as in  vitro neuroprotective activities screening on the 
injured PC12 cells. And the structure-activity relation-
ships (SARs) of these novel compounds were also briefly 
discussed.

Results and discussion
Chemistry
All the target compounds were synthesized via the routes 
outlined in Scheme  1. The key intermediate (3,5,6-tri-
methylpyrazin-2-yl)methanol (1) was prepared according 
to our previous study [25]. As shown in Scheme 1, com-
pound 1 underwent sulfonylation reaction with 4-toluene 
sulfonyl chloride to afford the intermediate 2. Starting 
from vanillic acid, the intermediate 3 was prepared by 
reacting vanillic acid with methyl alcohol and thionyl 

chloride. Then the intermediate 3 were reacted with the 
intermediate 2 in N,N-Dimethylformamide (DMF) in the 
presence of potassium carbonate to afford the compound 
VA-01, which was then hydrolyzed under alkaline condi-
tions to give the target compound VA-02.

The derivatives VA-03–VA-23 were successfully 
obtained by coupling VA-02 with various amines in the 
presence of 1-[3-(dimethylamino) propyl]-3-ethyl-car-
bodiimide hydrochloride (EDCI), diisopropylethylamine 
(DIPEA) and 1-hydroxybenzotriazole (HOBt) in CH2Cl2. 
The structures of all the target compounds (Table 1) were 
confirmed by spectral (1H-NMR, 13C-NMR) analysis and 
high resolution mass spectrometry (HRMS).

Protective effect on injured PC12 Cells
Setting ligustrazine and T-VA as the positive control 
drug, the neuroprotective activity of target compounds 
was evaluated on the neuronal-like PC12 cells dam-
aged by CoCl2. The results, expressed as proliferation 
rate (%) at different concentration and EC50, were sum-
marized in Table  2. As shown in Table  2, most of the 
ligustrazine-vanillic acid amide derivatives showed bet-
ter protective effects than the positive control drug TMP 
(EC50 = 64.35 ± 1.47 µM) on injured differentiated PC12 
cells. Among the candidates, the compound VA-06 
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Fig. 1  Structures of TMP and T-VA
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Scheme 1  Synthesis of the ligustrazine-vanillic acid derivative VA-01–VA-20. Reagents and Conditions: a dry THF, KOH, 4-toluene sulfonyl chloride 
(Tscl), 25 °C, 15 h; b thionyl chloride (SOCl2), 25 °C, 15 h; c DMF, dry K2CO3, N2, 70 °C, 15 h; d THF:MeOH:H2O = 3:1:1, LiOH, 37 °C, 2 h; e DCM, HoBt, 
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exhibited the most potent neuroprotective activity with 
EC50 values of 17.39 ± 1.34 µM.

From the obtained results, it was observed that esteri-
fication at the carboxylic group of vanillic acid may con-
tribute to enhance the neuroprotective activity, such as 
VA-01 > VA-02. This was in agreement with our previ-
ous research [20]. It should be noticed that introduction 
of a large lipophilic aromatic amine residue leaded to 
complete loss of neuroprotective activity (with exception 
of VA-06), such as VA-13–VA-16. But the compounds 
that introduced an aromatic amine residue at the carbox-
ylic group of vanillic acid performed better neuroprotec-
tive activities than VA-02 without any group substituted, 
such as VA-03, VA-04, VA-05, VA-08 > VA-02. Further-
more, the structure-activity relationship analysis among 
the T-VA aromatic amide derivatives revealed that the 
neuroprotective activities were mainly influenced by the 
type, but not the alkyl chain length of amine substituents, 
as exemplify by VA-04 > VA-03, VA-05. Although none 
of the newly synthesized T-VA derivatives showed more 
effect than the positive control drug T-VA, the struc-
ture-activity relationship (SAR) analysis above provided 
important information for further design of new neuro-
protective ligustrazine derivatives.

Protective effect of VA‑06 on injured PC12 cells
To further characterize the protective effect of VA-
06 on injured PC12 cells, the cell morphology changes 
were observed under an optical microscopy. As shown 
in Fig. 2, the morphology of undifferentiated PC12 cells 
was normal, the cells were small and proliferated to form 
clone-like cell clusters without neural characteristics 
(Fig.  2A); By exposure to NGF, normal differentiated 
PC12 cells showed round cell bodies with fine dendritic 
networks similar to those nerve cells (Fig. 2B). Moreover, 
the mean value expressed as percent of neurite-bearing 
cells in NGF treated cells was 65.4% (Fig. 3). When the 
differentiated PC12 cells treated with 250  mM CoCl2 
for 12  h, almost all cells showed typical morphological 

Table 1  The structures of  ligustrazine derivatives VA-
01–VA-20 
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changes such as cell body shrinkage and the disruption 
of the dendritic networks (Fig.  2C); the mean value of 
neurite-bearing cells (9.4%, Fig.  3) showed a signifi-
cant decrease. While pretreatment with 60  μM VA-06 
before delivery of CoCl2 dramatically alleviated the dam-
age caused by CoCl2 to cell morphology (Fig.  2D) and 
showed significant difference in the number of neurite-
bearing cells (47.5%, Fig. 3) from that of CoCl2 treatment 
alone.

Conclusions
In this study, we successfully synthesized 20 novel T-VA 
amide derivatives by combining T-VA with different 
amines. Their protective effects against CoCl2-induced 
neurotoxicity in differentiated PC12 cells were deter-
mined by the MTT assay. The result indicated that most 
of T-VA amide derivatives showed protective effects on 
injured differentiated PC12 cells. Among them, a large 
portion of the derivatives were more active (with lower 
EC50 values) than the positive control drug TMP, of 
which compound VA-06 displayed the highest neuro-
protective effect with EC50 values of 17.39 ±  1.34  µM. 

Although none of the newly synthesized T-VA deriva-
tives showed more effect than the positive control drug 
T-VA, the results enriched the study of ligustrazine 
derivatives with neuroprotective activity. Further bioas-
say of compound VA-06 on neuroprotective activity on 
animal models is underway.

Methods
Chemistry
Reagents were bought from commercial suppliers with-
out any further purification. Melting points were meas-
ured at a rate of 5  °C/min using an X-5 micro melting 
point apparatus (Beijing, China) and were not corrected. 
Reactions were monitored by TLC using silica gel coated 
aluminum sheets (Qingdao Haiyang Chemical Co., Qing-
dao, China). NMR spectra were recorded on a BRUKER 
AVANCE 500 NMR spectrometer (Fällanden, Switzer-
land) with tetramethylsilane (TMS) as an internal stand-
ard; chemical shifts δ were given in ppm and coupling 
constants J in Hz. HR-MS were acquired using a Thermo 
Sientific TM LTQ Orbitrap XL hybrid FTMS instrument 
(Thermo Technologies, New York, NY, USA). Cellular 

Table 2  The EC50 of the ligustrazine-vanillic acid amide derivatives for protecting damaged PC12 cells

a  Mean value ± standard deviation from three independent experiments

Compd Proliferation rate (%) EC50 (μM)a

60 μM 30 μM 15 μM 7.5 μM 3.75 μM

VA-01 81.75 ± 2.34 49.05 ± 4.07 43.15 ± 3.11 21.25 ± 1.25 22.77 ± 7.27 18.74 ± 1.94

VA-02 7.38 ± 0.95 12.55 ± 1.50 −0.47 ± 1.97 −11.43 ± 2.05 −10.48 ± 1.68 >100

VA-03 25.50 ± 1.48 21.42 ± 1.35 18.63 ± 0.82 13.34 ± 1.68 7.36 ± 1.73 52.48 ± 2.0

VA-04 46.60 ± 2.14 40.99 ± 3.08 41.49 ± 2.89 23.64 ± 2.32 6.88 ± 1.89 29.61 ± 0.78

VA-05 37.17 ± 2.17 31.36 ± 3.78 25.65 ± 2.05 21.54 ± 2.19 17.11 ± 1.51 36.61 ± 1.97

VA-06 89.81 ± 3.02 51.80 ± 5.61 29.51 ± 4.15 17.32 ± 6.10 15.78 ± 3.01 17.39 ± 1.34

VA-07 8.79 ± 2.27 53.07 ± 2.41 47.15 ± 1.31 7.42 ± 1.00 −5.52 ± 2.14 60.20 ± 25.70

VA-08 52.64 ± 2.94 29.29 ± 2.93 23.41 ± 1.71 18.50 ± 3.61 26.69 ± 5.58 33.62 ± 3.96

VA-09 49.34 ± 1.80 41.80 ± 0.81 41.56 ± 1.51 23.14 ± 2.78 14.05 ± 3.78 27.90 ± 1.65

VA-10 16.33 ± 1.60 33.99 ± 2.61 12.56 ± 4.21 15.66 ± 4.06 15.60 ± 5.67 48.79 ± 3.76

VA-11 32.99 ± 2.82 23.38 ± 2.92 15.20 ± 2.54 11.09 ± 0.67 14.44 ± 4.85 47.85 ± 1.84

VA-12 −71.58 ± 2.70 −59.50 ± 3.91 −35.73 ± 3.44 −11.99 ± 4.56 13.86 ± 2.28 >100

VA-13 −277.39 ± 4.12 −292.67 ± 10.71 −297.34 ± 12.0 −298.64 ± 8.39 −296.33 ± 11.32 >100

VA-14 15.86 ± 1.47 12.13 ± 1.17 8.64 ± 0.83 5.51 ± 0.69 2.69 ± 0.72 71.66 ± 2.12

VA-15 −198.39 ± 4.52 −60.74 ± 3.21 88.57 ± 7.11 48.83 ± 5.28 45.01 ± 8.01 >100

VA-16 −23.15 ± 3.05 −13.96 ± 1.49 −14.86 ± 2.64 −14.51 ± 1.40 2.99 ± 1.08 >100

VA-17 69.41 ± 4.00 52.29 ± 3.05 32.78 ± 0.96 18.63 ± 0.81 10.12 ± 0.59 24.73 ± 1.37

VA-18 5.32 ± 1.11 12.04 ± 0.44 15.96 ± 1.05 15.27 ± 0.74 −2.97 ± 0.85 71.92 ± 1.07

VA-19 15.21 ± 3.12 13.89 ± 2.96 8.23 ± 1.31 8.61 ± 1.45 10.52 ± 2.03 65.72 ± 2.93

VA-20 25.14 ± 4.22 17.38 ± 0.21 15.87 ± 1.05 15.12 ± 0.65 8.97 ± 0.49 53.74 ± 1.69

TMP 14.44 ± 0.76 12.24 ± 0.66 11.82 ± 0.45 10.80 ± 0.43 9.65 ± 0.71 64.35 ± 1.47

T-VA 127.27 ± 3.70 118.60 ± 7.47 88.59 ± 2.28 51.49 ± 1.14 31.01 ± 0.94 4.29 ± 0.47
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morphologies were observed using an inverted fluores-
cence microscope (Olympus IX71, Tokyo, Japan).

Synthesis of (3,5,6‑trimethylpyrazin‑2‑yl)methanol (1)
Compound 1 was prepared according to our previously 
reported method [21].

Synthesis of (3,5,6‑trimethylpyrazin‑2‑yl)methyl 
4‑methylbenzenesulfonate (2)
To a solution of compound 1 (7.0  g, 46.3  mmol) and 
KOH (2.6 g, 46.3 mmol) in dry THF (100 ml), Tscl (8.82 g, 
46.3  mmol) was added, then the mixture was stirred at 
25 °C for 15 h. After completion of the reaction (as moni-
tored by TLC), the reaction mixture was poured into water 
and the crude product was extracted with dichloromethane 
(3 ×  100  ml), the combined organic layers were washed 
with brine (100  ml), anhydrous Na2SO4, filtered and the 
solvents were evaporated under vacuum. The crude prod-
ucts were purified by flash chromatography (Petroleum 
ether:Ethyl acetate  =  4:1) to produce a white solid. The 
crude product, with 90% purity, was not purified further.

Synthesis of methyl 4‑hydroxy‑3‑methoxybenzoate (3)
To a solution of vanillic acid (5.502 g, 32.7 mmol) in dry 
MeOH (100  ml), 3  ml SOCl2 was added gradually with 
stirring and cooling. Upon completion of the addition, 
the mixture was stirred at 25 °C for 15 h. After comple-
tion of the reaction (as monitored by TLC), the reaction 
mixture was evaporated under vacuum to produce a 
white solid. The crude product, with 95% purity, was not 
purified further.

Fig. 2  Protective effects of compound VA-06 against CoCl2-induced injury in differentiated PC12 cells (×200) The most representative fields are 
shown. A Undifferentiated PC12 cells. B Differentiated PC12 cells by NGF. C CoCl2-induced neurotoxicity of differentiated PC12 cells. D CoCl2-
induced neurotoxicity +VA-06 (60 μM)

Fig. 3  Protective effects of compound VA-06 (60 μM) against CoCl2-
induced injury in differentiated PC12 cells The neurite-bearing ration 
was shown as mean ± SD of at least 3 independent experiments. 
*p ≤ 0.05 level, significance relative to CoCl2 group
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Synthesis of methyl 
3‑methoxy‑4‑[(3,5,6‑trimethylpyrazin‑2‑yl)methoxy] 
benzoate (VA‑01)
Compound 2 (7.828  g, 256  mmol) and Compound 3 
(3.580  g, 197  mmol) were dissolved in dry DMF, then 
K2CO3 (5.423 g, 393 mmol) was added and the mixture 
was kept at 70  °C for 15  h under nitrogen atmosphere. 
After completion of the reaction (as monitored by TLC), 
the reaction mixture was poured into ice-water and the 
crude product was extracted with dichloromethane. 
After drying the organic layer over anhydrous Na2SO4 
and evaporating the solvent under vacuum, the crude 
products were purified by flash chromatography (Dichlo-
romethane: methyl alcohol =  40:1) to produce a white 
solid.

methyl 3‑methoxy‑4‑[(3,5,6‑trimethylpyrazin‑2‑yl)meth‑
oxy] benzoate (VA‑01)  White solid, yield: 52.5%, m.p.: 
140.0–140.7  °C. 1H-NMR (CDCl3) (ppm): 2.51 (s, 3H, –
CH3), 2.52 (s, 3H, –CH3), 2.62 (s, 3H, –CH3), 3.88 (s, 6H, 
2× –OCH3), 5.26 (s, 2H, –CH2), 7.06 (d, J = 8.4 Hz, 1H, 
Ar–H), 7.53 (d, J = 1.2 Hz, 1H, Ar–H), 7.63 (dd, J = 1.2, 
8.4  Hz, 1H, Ar–H). 13C-NMR (CDCl3) (ppm): 20.67 (–
CH3), 21.51 (–CH3), 21.70 (–CH3), 52.16 (–OCH3), 56.12 
(–OCH3), 70.81 (–CH2), 112.51, 112.82, 114.38, 123.41, 
145.41, 148.91, 149.30, 150.12, 151.39, 151.99, 166.95 (–
COO–). HRMS (ESI) m/z: 317.14905–3.4 ppm [M+H]+, 
calcd. for C17H20N2O4 316.14231.

Synthesis of 3‑Methoxy‑4‑[(3,5,6‑trimethylpyrazin‑2‑yl)
methoxy]benzoic acid (VA‑02)
An aqueous solution of LiOH (1.289  g, 307  mmol) was 
added to a solution of VA-01 (3.237  g, 102  mmol) in 
THF:MeOH:H2O  =  3:1:1 (100  ml). The mixture was 
stirred at 37 °C for 2 h (checked by TLC). Upon comple-
tion of the reaction, pH was adjusted to 4–5 with 1 mol/l 
HCl. Then the reaction mixture was filtered and washed 
with water to give a white solid. The compound VA-02 
has been reported by us previously [20].

General procedure for the preparation of ligustrazine‑vanillic 
acid derivative VA‑03–VA‑20
Compound VA-02 (0.662  mmol, 1.0  eq) and the cor-
responding amine (0.926  mmol, 1.4  eq) were dissolved 
in 25 ml dry CH2Cl2, then HoBt (1.0592 mmol, 1.6 eq), 
EDCI (1.0592  mmol, 1.6  eq), DIPEA (1.986  mmol, 
3.0 eq) were added and the mixture was kept at 25 °C for 
12 h. After completion of the reaction (as monitored by 
TLC), the reaction mixture was poured into water and 
the crude product was extracted with dichloromethane 
(3 ×  25  ml), the combined organic layers were washed 
with brine (50  ml), anhydrous Na2SO4, filtered and the 
solvents were evaporated under vacuum. The crude 

products were purified by flash chromatography (Petro-
leum ether:acetone = 5:1).

N‑ethyl‑3‑methoxy‑4‑((3,5,6‑trimethylpyrazin‑2‑yl)
methoxy)benzamide (VA‑03)  White solid, yield: 89.5%, 
m.p.: 194.5–195.8  °C. 1H-NMR (CDCl3) (ppm): 1.22 (t, 
3H, –CH3), 2.49 (s, 3H, –CH3), 2.50 (s, 3H, –CH3), 2.60 
(s, 3H, –CH3), 3.45 (m, 2H, –CH2), 3.86 (s, 3H, –OCH3), 
5.22 (s, 2H, –CH2), 6.15 (s, 1H, –NH), 7.01 (d, J = 8.3 Hz, 
1H, Ar–H), 7.21 (d, J = 8.3 Hz, 1H, Ar–H), 7.40 (s, 1H, 
Ar–H). 13C-NMR (CDCl3) (ppm): 15.06 (–CH3), 20.65 (–
CH3), 21.48 (–CH3), 21.68 (–CH3), 35.03 (–CH2), 56.11 
(–OCH3), 70.89 (–CH2), 111.12, 113.09, 118.99, 128.30, 
145.49, 148.81, 149.73, 150.13, 150.55, 151.33, 167.04 
(–CONH–). HRMS (ESI) m/z: 330.18045–3.9  ppm 
[M+H]+, calcd. for C18H23N3O3 329.17394.

(3‑methoxy‑4‑((3,5,6‑trimethylpyrazin‑2‑yl)methoxy)phe‑
nyl)(piperidin‑1‑yl)methanone (VA‑04)  White solid, 
yield: 65.2%, m.p.: 176.0–176.8  °C. 1H-NMR (CDCl3) 
(ppm): 1.66 (m, 6H, 3× –CH2), 2.50 (s, 3H, –CH3), 2.51 (s, 
3H, –CH3), 2.61 (s, 3H, –CH3), 3.39 (brs, 2H, –CH2), 3.70 
(m, 2H, –CH2), 3.84 (s, 3H, –OCH3) 5.21 (s, 2H, –CH2), 
6.90 (d, J = 8.1 Hz, 1H, Ar–H), 6.96 (s, 1H, Ar–H), 7.01 (d, 
J = 8.1 Hz, 1H, Ar–H), 13C-NMR (CDCl3) (ppm): 20.70 
(–CH3), 21.51 (–CH3), 21.73 (–CH3), 24.73, 31.11, 56.03 
(–OCH3), 58.48, 71.00 (–CH2), 111.06, 113.45, 119.61, 
129.68, 145.62, 148.75, 148.92, 149.65, 150.20, 151.30, 
170.21 (–CON–). HRMS (ESI) m/z: 370.21179–3.4 ppm 
[M+H]+, calcd. for C21H27N3O3 369.20524.

3‑methoxy‑N‑methyl‑4‑((3,5,6‑trimethylpyrazin‑2‑yl)
methoxy)benzamide (VA‑05)  White solid, yield: 87.0%, 
m.p.:173.5–174.5  °C. 1H-NMR (CDCl3) (ppm): 2.50 (s, 
3H, –CH3), 2.51 (s, 3H, –CH3), 2.61 (s, 3H, –CH3), 2.98 
(s, 3H, –CH3), 3.86 (s, 3H, –OCH3), 5.23 (s, 2H, –CH2), 
6.20 (s, 1H, –NH), 7.02 (d, J = 8.0 Hz, 1H, Ar–H), 7.21 
(d, J = 8.0 Hz, 1H, Ar–H), 7.40 (s, 1H, Ar–H). 13C-NMR 
(CDCl3) (ppm): 20.68 (–CH3), 21.49 (–CH3), 21.71 (–
CH3), 26.97 (–CH3), 56.11 (–OCH3), 70.90 (–CH2), 
111.08, 113.12, 119.06, 128.16, 145.48, 148.83, 149.73, 
150.15, 150.60, 151.37, 167.87 (–CONH–). HRMS (ESI) 
m/z: 316.16489–3.9 ppm [M+H]+, calcd. for C17H21N3O3 
315.15829.

N‑(3‑(dimethylamino)phenyl)‑3‑methoxy‑4‑((3,5,6‑tri‑
methylpyrazin‑2‑yl)methoxy)benzamide (VA‑06)  White 
solid, yield: 74.0%, m.p.: 171.4–172.3°C. 1H-NMR (CDCl3) 
(ppm): 2.51 (s, 6H, 2×  –CH3), 2.62 (s, 3H, –CH3), 2.98 
(s, 6H, 2×  –CH3), 3.91 (s, 3H, –OCH3), 5.27 (s, 2H, –
CH2), 6.53 (d, J = 7.8 Hz, 1H, Ar–H), 6.81 (d, J = 7.8 Hz, 
1H, Ar–H), 7.09 (d, J = 8.4 Hz, 1H, Ar–H), 7.20 (m, 1H, 
Ar–H), 7.33 (dd, J  =  1.9  Hz, 8.4  Hz, 1H, Ar–H), 7.51 
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(d, J = 1.9 Hz, 1H, Ar–H), 7.69 (s, 1H, –NH). 13C-NMR 
(CDCl3) (ppm): 20.70 (–CH3), 21.53 (–CH3), 21.74 (–
CH3), 41.1 (–CH3), 56.10 (–OCH3), 70.74 (–CH2), 103.80, 
109.96, 111.25,111.40, 119.51, 120.83, 128.70, 129.82, 
137.45, 145.34, 148.91, 149.22, 150.14, 151.45, 151.94, 
152.52, 166.97 (–CON–). HRMS (ESI) m/z: 421.22144–
6.0 ppm [M+H]+, calcd. for C24H28N4O3 420.21614.

3 ‑ m e t h o x y ‑ N ‑ ( 3 ‑ ( 2 ‑ m e t hy l ‑ 1 H ‑ imi d a z o l ‑ 1 ‑ y l )
propyl)‑4‑((3,5,6‑trimethylpyrazin‑2‑yl)methoxy)benza‑
mide (VA‑07)  White solid, yield: 68.9%, m.p.: 160.0–
160.8  °C. 1H-NMR (CDCl3) (ppm): 2.04 (m, 2H, –CH2), 
2.35 (s, 3H, –CH3), 2.48 (s, 3H, –CH3), 2.49 (s, 3H, –CH3), 
2.59 (s, 3H, –CH3), 3.45 (m, 2H, –CH2), 3.86 (s, 3H, –
OCH3), 3.93 (m, 2H, –CH2), 5.21 (s, 2H, –CH2), 6.66 (m, 
1H, –NH), 6.90 (s, 2H, 2× –CH), 7.02 (d, J = 8.4 Hz, 1H, 
Ar–H), 7.23 (d, J = 8.4 Hz, 1H, Ar–H), 7.40 (s, 1H, Ar–H). 
13C-NMR (CDCl3) (ppm): 12.98 (–CH3), 20.78 (–CH3), 
21.50 (–CH3), 21.83 (–CH3), 30.89 (–CH2), 37.46 (–CH2), 
44.19 (–CH2), 56.16 (–OCH3), 70.91 (–CH2), 111.08, 
113.01, 119.37, 119.44, 126.73, 127.48, 144.46, 145.24, 
148.70, 149.71, 150.24, 150.88, 151.55, 167.45 (–CONH–). 
HRMS (ESI) m/z: 424.23187–7.1 ppm [M+H]+, calcd. for 
C23H29N5O3 423.22704.

N‑(3‑ethoxypropyl)‑3‑methoxy‑4‑((3,5,6‑trimethylpyra‑
zin‑2‑yl)methoxy)benzamide (VA‑08)  White solid, yield: 
76.4%, m.p.: 119.0–119.9  °C. 1H-NMR (CDCl3) (ppm): 
1.23 (m, 3H, –CH3), 1.88 (m, 2H, –CH2), 2.50 (s, 3H, –
CH3), 2.51 (s, 3H, –CH3), 2.61 (s, 3H, –CH3), 3.50 (m, 2H, 
–CH2), 3.55 (m, 2H, –CH2), 3.61 (m, 2H, –CH2), 3.88 (s, 
3H, –OCH3), 5.24 (s, 2H, –CH2–), 7.03 (d, J = 8.3 Hz, 1H, 
Ar–H), 7.07 (s, 1H, –NH), 7.20 (d, J = 8.3 Hz, 1H, Ar–H), 
7.42 (s, 1H, Ar–H). 13C-NMR (CDCl3) (ppm): 15.52 (–
CH3), 20.75 (–CH3), 21.51 (–CH3), 21.78 (–CH3), 28.88 (–
CH2), 39.70, 56.11 (–OCH3), 58.58, 66.73, 70.83 (–CH2), 
111.05, 112.97, 118.94, 128.32, 145.46, 148.75, 149.65, 
150.24, 150.46, 151.41, 166.80 (–CONH–). HRMS (ESI) 
m/z: 388.22171–5.0 ppm [M+H]+, calcd. for C21H29N3O4 
387.21581.

N‑(2‑hydroxyethyl)‑3‑methoxy‑4‑((3,5,6‑trimethylpyra‑
zin‑2‑yl)methoxy)benzamide (VA‑09)  Brick-red solid, 
yield: 86.7%, m.p.: 156.9–157.9  °C. 1H-NMR (CDCl3) 
(ppm): 2.50 (s, 3H, –CH3), 2.51 (s, 3H, –CH3), 2.61 (s, 3H, 
–CH3), 3.59 (m, 2H, –CH2), 3.81 (m, 2H, –CH2), 3.87 (s, 
3H, –OCH3), 5.23 (s, 2H, –CH2), 6.63 (s, 1H, –NH), 7.03 (d, 
J = 8.4 Hz, 1H, Ar–H), 7.25 (dd, J = 2.0, 8.4 Hz, 1H, Ar–H), 
7.40 (d, J = 2.0 Hz, 1H, Ar–H). 13C-NMR (CDCl3) (ppm): 
20.65 (–CH3), 21.42 (–CH3), 21.69 (–CH3), 43.01 (–CH2), 
56.08 (–OCH3), 62.27 (–CH2), 70.71 (–CH2), 111.07, 112.97, 

119.50, 127.54, 145.25, 148.83, 149.61, 150.16, 150.80, 
151.54, 168.15 (–CONH–). HRMS (ESI) m/z: 346.17517–
4.4 ppm [M+H]+, calcd. for C18H23N3O4 345.16886.

N‑(2‑(dimethylamino)ethyl)‑3‑methoxy‑4‑((3,5,6‑trimeth‑
ylpyrazin‑2‑yl)methoxy)benzamide (VA‑10)  White 
solid, yield: 79.3%, m.p.: 148.6–149.0  °C. 1H-NMR 
(CDCl3) (ppm): 2.51 (s, 6H, 2× –CH3), 2.52 (s, 2H, –CH2), 
2.54 (s, 6H, 2×  –CH3), 2.62 (s, 3H, –CH3), 3.92 (s, 3H, 
–OCH3), 4.65 (d, 2H, –CH2), 5.26 (s, 2H, –CH2–), 7.09 
(d, J = 8.4 Hz, 1H, Ar–H), 7.38 (dd, J = 2.0, 8.4 Hz, 1H, 
Ar–H), 7.51 (d, J = 2.0 Hz, 1H, Ar–H), 7.82 (brs, 1H, –
NH). 13C-NMR (CDCl3) (ppm): 20.75 (–CH3), 21.48 (–
CH3), 21.79 (–CH3), 27.41, 32.33, 51.08, 56.14 (–OCH3), 
70.92 (–CH2), 111.35, 113.07, 118.72, 128.48, 145.34, 
148.68, 149.82, 150.24, 150.64, 151.49, 167.32 (–CONH–). 
HRMS (ESI) m/z: 373.23010+16.4 ppm [M+H]+, calcd. 
for C20H28N4O3 372.21614.

( 4 ‑ ( 4 ‑ c h l o r o p h e n y l ) p i p e r a z i n ‑ 1 ‑ y l ) ( 3 ‑ m e t h ‑
oxy‑4‑((3,5,6‑trimethylpyrazin‑2‑yl)methoxy)phenyl)
methanone (VA‑11)  White solid, yield: 68.3%, m.p.: 
179.0–179.5  °C. 1H-NMR (CDCl3) (ppm): 2.51 (s, 3H, –
CH3), 2.53 (s, 3H, –CH3), 2.63 (s, 3H, –CH3), 3.16 (brs, 
4H, 2×  –CH2), 3.79 (brs, 4H, 2×  –CH2), 3.86 (s, 3H, –
OCH3), 5.24 (s, 2H, –CH2), 6.87 (d, J = 8.2 Hz, 2H, Ar–H), 
6.96 (d, J = 8.2 Hz, 1H, Ar–H), 7.01 (s, 1H, Ar–H), 7.05 
(d, J = 8.2 Hz, 1H, Ar–H), 7.23 (d, J = 8.2 Hz, 2H, Ar–H). 
13C-NMR (CDCl3) (ppm): 20.62 (–CH3), 21.51 (–CH3), 
21.65 (–CH3), 29.83, 32.08, 37.07, 49.99 (–CH2), 56.15 
(–OCH3), 71.04 (–CH2), 111.46, 113.53, 118.14, 120.08, 
128.59, 129.30, 145.67, 148.90, 149.48, 149.90, 150.13, 
151.29, 170.37 (–CON–). HRMS (ESI) m/z: 481.19775–
6.0 ppm [M+H]+, calcd. for C26H29ClN4O3 480.19282.

tert‑butyl4‑(3‑methoxy‑4‑((3,5,6‑tr imethylpyra‑
zin‑2‑yl)methoxy)benzoyl)piperazine‑1‑carboxylate 
(VA‑12)  White solid, yield: 57.6%, m.p.: 86.6–87.6  °C. 
1H-NMR (CDCl3) (ppm): 1.36 (brs, 2H, –CH2), 1.44 (s, 
9H, 3× –CH3), 1.99 (brs, 2H, –CH2), 2.50 (s, 3H, –CH3), 
2.52 (s, 3H, –CH3), 2.62 (s, 3H, –CH3), 3.02 (brs, 2H, –
CH2), 3.70 (brs, 2H, –CH2), 3.84 (s, 3H, –OCH3), 4.47 
(brs, 2H, –CH2), 5.22 (s, 2H, –CH2–), 6.90 (dd, J = 1.6 Hz, 
8.2 Hz, 1H, Ar–H), 6.96 (d, J = 1.6 Hz, 1H, Ar–H), 7.02 
(d, J  =  8.2  Hz, 1H, Ar–H). 13C-NMR (CDCl3) (ppm): 
20.64 (–CH3), 21.49 (–CH3), 21.66 (–CH3), 28.49 (–CH3), 
33.01, 41.35, 48.08 (–CH), 56.09 (–OCH3), 71.03 (–CH2), 
79.75 (–OCH), 111.22, 113.55, 119.77, 129.10, 145.66, 
148.83, 149.26, 149.79, 150.14, 151.26, 155.16 (–COO–), 
170.35 (–CON–). HRMS (ESI) m/z: 485.27286–7.3 ppm 
[M+H]+, calcd. for C26H36N4O5 484.26857.
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N‑(4‑(cyanomethyl)phenyl)‑3‑methoxy‑4‑((3,5,6‑trimeth‑
ylpyrazin‑2‑yl)methoxy)benzamide (VA‑13)  White 
solid, yield: 65.7%, m.p.:199.0–199.5 °C. 1H-NMR (CDCl3) 
(ppm): 2.51 (s, 3H, –CH3), 2.52 (s, 3H, –CH3), 2.62 (s, 3H, 
–CH3), 3.74 (s, 2H, –CH2), 3.90 (s, 3H, –OCH3), 5.27 (s, 
2H, –CH2), 7.09 (d, J = 8.2 Hz, 1H, Ar–H), 7.32 (d, 2H, 
Ar–H) 7.35 (dd, J = 1.8, 8.2 Hz, 1H, Ar–H), 7.48 (s, 1H, 
Ar–H), 7.65 (d, J = 8.2 Hz, 2H, Ar–H), 7.87 (brs, 1H, –
NH). 13C-NMR (CDCl3) (ppm): 20.66 (–CH3), 21.47 (–
CH3), 21.70 (–CH3), 23.24, 56.14 (–OCH3), 70.80 (–CH2), 
111.24, 112.96, 118.09, 119.51, 120.83, 125.59, 127.96, 
128.70, 138.15, 145.27, 148.92, 149.85, 150.11, 151.16, 
151.51, 165.45 (–CON–). HRMS (ESI) m/z: 417.19052–
5.2 ppm [M+H]+, calcd. for C24H24N4O3 416.18484.

3‑methoxy‑N‑(4‑phenoxyphenyl)‑4‑((3,5,6‑trimethyl‑
pyrazin‑2‑yl)methoxy)benzamide (VA‑14)  White solid, 
yield: 57.8%, m.p.: 182.5–183.3  °C. 1H-NMR (CDCl3) 
(ppm): 2.52 (s, 3H, –CH3), 2.53 (s, 3H, –CH3), 2.64 (s, 
3H, –CH3), 3.91 (s, 3H, –OCH3), 5.27 (s, 2H, –CH2), 7.01 
(m, 4H, Ar–H), 7.09 (m, 2H, Ar–H), 7.33 (m, 3H, Ar–H), 
7.49 (d, J = 2 Hz, 1H, Ar–H), 7.58 (m, 2H, Ar–H), 7.78 
(brs, 1H, –NH). 13C-NMR (CDCl3) (ppm): 20.63 (–CH3), 
21.50 (–CH3), 21.66 (–CH3), 56.16 (–OCH3), 70.85 (–
CH2), 111.27, 113.07, 118.59, 120.04, 119.75, 122.04, 
123.23, 128.25, 129.86, 133.66, 145.40, 148.96, 149.90, 
150.09, 151.03, 151.42, 153.68, 157.62, 165.35 (–CON–). 
HRMS (ESI) m/z: 470.20447–7.5 ppm [M+H]+, calcd. for 
C28H27N3O4 469.20016.

3‑methoxy‑N‑phenyl‑4‑((3,5,6‑trimethylpyrazin‑2‑yl)
methoxy)benzamide (VA‑15)  White solid, yield: 68.9%, 
m.p.: 189.7–190.2  °C. 1H-NMR (CDCl3) (ppm): 2.50 (s, 
3H, –CH3), 2.51 (s, 3H, –CH3), 2.62 (s, 3H, –CH3), 3.89 
(s, 3H, –OCH3), 5.26 (s, 2H, –CH2–), 7.08 (d, J = 8.3 Hz, 
1H, Ar–H), 7.14 (m, 1H, Ar–H), 7.35 (m, 3H, Ar–H), 7.49 
(d, J = 1.8 Hz, 1H, Ar–H), 7.62 (d, 2H, Ar–H), 7.81 (s, 1H, 
–NH–). 13C-NMR (CDCl3) (ppm): 20.65 (–CH3), 21.47 
(–CH3), 21.69 (–CH3), 56.08 (–OCH3), 70.81 (–CH2), 
111.25, 112.95, 119.39, 120.26, 124.46, 128.33, 129.12, 
138.19, 145.29, 148.87, 149.81, 150.10, 150.99, 151.46, 
165.42 (–CONH–). HRMS (ESI) m/z: 378.18002–4.6 ppm 
[M+H]+, calcd. for C22H23N3O3 377.17394.

3‑methoxy‑N‑(naphthalen‑2‑yl)‑4‑((3,5,6‑trimethylpyra‑
zin‑2‑yl)methoxy)benzamide (VA‑16)  White solid, 
yield: 67.0%, m.p.: 174.1–175.0  °C.1H-NMR (CDCl3) 
(ppm): 2.53 (s, 6H, 2× –CH3), 2.65 (s, 3H, –CH3), 3.92 
(s, 3H, –OCH3), 5.30 (s, 2H, –CH2), 7.14 (d, J = 8.2 Hz, 
1H, Ar–H), 7.52 (m, 4H, Ar–H), 7.58 (s, 1H, Ar–H), 
7.74 (d, J = 8.2 Hz, 1H, Ar–H), 7.90 (m, 2H, Ar–H), 7.99 
(m, 1H, Ar–H), 8.17 (s, 1H, –NH–). 13C-NMR (CDCl3) 
(ppm): 20.66 (–CH3), 21.49 (–CH3), 21.66 (–CH3), 

56.16 (–OCH3), 70.86 (–CH2), 111.49, 113.05, 119.44, 
121.03, 121.47, 125.88, 126.15, 126.43, 127.73, 128.19, 
128.87, 132.70, 134.25, 145.39, 148.93, 149.94, 150.11, 
151.11, 151.43, 166.02 (–CONH–). HRMS (ESI) m/z: 
428.19547–4.6  ppm [M+H]+, calcd. for C26H25N3O3 
427.18959.

3‑methoxy‑N‑(3‑morpholinopropyl)‑4‑((3,5,6‑trimethyl‑
pyrazin‑2‑yl)methoxy)benzamide (VA‑17)  White solid, 
yield: 65.2%, m.p.: 129.2–129.5  °C. 1H-NMR (CDCl3) 
(ppm): 1.79 (m, 2H, –CH2), 2.50 (m, 10H), 2.55 (m, 2H, 
–CH2), 2.61 (s, 3H, –CH3), 3.55 (m, 2H, –CH2), 3.70 
(m, 4H, 2×  –CH2), 3.89 (s, 3H, –OCH3), 5.25 (s, 2H, –
CH2), 7.05 (d, J = 8.3 Hz, 1H, Ar–H), 7.24 (dd, J = 1.6, 
8.3 Hz, 1H, Ar–H), 7.47 (d, J = 1.6 Hz, 1H, Ar–H), 7.75 
(brs, 1H, –NH–). 13C-NMR (CDCl3) (ppm): 20.79 (–
CH3), 21.47 (–CH3), 21.82 (–CH3), 24.40, 40.42 (–CH2), 
53.86 (–CH2), 56.19 (–OCH3), 58.59, 66.90, 70.91 (–CH2), 
111.42, 112.94, 118.95, 128.28, 145.34, 148.67, 149.77, 
150.26, 150.59, 151.47, 167.06 (–CONH–). HRMS (ESI) 
m/z: 429.24731–6.6 ppm [M+H]+, calcd. for C23H32N4O4 
428.24232.

3‑methoxy‑N‑(thiophen‑2‑ylmethyl)‑4‑((3,5,6‑trimethyl‑
pyrazin‑2‑yl)methoxy)benzamide (VA‑18)  White solid, 
yield: 62.7%, m.p.:156.3–156.9  °C. 1H-NMR (CDCl3) 
(ppm): 2.50 (s, 3H, –CH3), 2.52 (s, 3H, –CH3), 2.62 (s, 3H, 
–CH3), 3.89 (s, 3H, –OCH3), 4.80 (d, 2H, –CH2), 5.24 (s, 
2H, –CH2), 6.36 (brs, 1H, –NH), 6.97 (m, 1H, –CH), 7.03 
(m, 2H, 2× –CH), 7.22 (dd, J = 2.0, 8.3 Hz, 1H, Ar–H), 
7.24 (d, 1H, Ar–H), 7.44 (d, J = 2.0 Hz, 1H, Ar–H). 13C-
NMR (CDCl3) (ppm): 20.42 (–CH3), 21.47 (–CH3), 29.84 
(–CH3), 38.97 (–CH2), 56.18 (–OCH3), 70.80 (–CH2), 
111.28, 113.13, 119.22, 125.50, 126.36, 127.09, 127.66, 
141.03, 144.09, 145.78, 149.19, 149.83, 150.80, 151.46, 
166.73 (–CONH–). HRMS (ESI) m/z: 398.15253–3.3 ppm 
[M+H]+, calcd. for C21H23N3O3 S 397.14601.

3‑methoxy‑N‑(4‑methoxybenzyl)‑4‑((3,5,6‑trimethylpyra‑
zin‑2‑yl)methoxy)benzamide (VA‑19)  White solid, yield: 
75.1%, m.p.: 161.6–162.3  °C. 1H-NMR (CDCl3) (ppm): 
2.48 (s, 3H, –CH3), 2.49 (s, 3H, –CH3), 2.59 (s, 3H, –CH3), 
3.78 (s, 3H, –OCH3), 3.86 (s, 3H, –OCH3), 4.53 (d, 2H, –
CH2), 5.22 (s, 2H, –CH2), 6.41 (s, 1H, –NH), 6.85 (s, 1 H, 
Ar–H), 6.86 (d, J = 8.0 Hz, 2 H, Ar–H), 7.00 (d, J = 8.3 Hz, 
1 H, Ar–H), 7.19 (m, 1 H, Ar–H),, 7.25 (d, J = 8.0 Hz, 2 
H, Ar–H), 7.43 (s, 1H, Ar–H). 13C-NMR (CDCl3) (ppm): 
20.68 (–CH3), 21.50 (–CH3), 21.72 (–CH3), 43.72 (–CH2–),  
55.2 (–OCH3), 56.10 (–OCH3), 70.81 (–CH2), 111.12, 
112.92, 114.17, 119.11, 127.79, 129.42, 130.44, 145.38, 
148.79, 149.68, 150.15, 150.67, 151.41, 159.13, 166.87 
(–CONH–). HRMS (ESI) m/z: 422.21408–14.0  ppm 
[M+H]+, calcd. for C24H27N3O4 421.20016.
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Methyl 3‑(3‑methoxy‑4‑((3,5,6‑trimethylpyrazin‑2‑yl)
methoxy)benzamido)propanoate (VA‑20)  White solid, 
yield: 83.2%, m.p.: 139.6–140.1  °C. 1H-NMR (CDCl3) 
(ppm): 2.51 (s, 3H, –CH3), 2.52 (s, 3H, –CH3), 2.61 (s, 3H, 
–CH3), 2.64 (t, 2H, –CH2), 3.69 (m, 2H, –CH2), 3.70 (s, 
3H, –OCH3), 3.88 (s, 3H, –OCH3), 5.24 (s, 2H, –CH2), 
6.80 (s, 1H, –NH), 7.02 (d, J = 8.3 Hz, 1H, Ar–H), 7.20 
(d, J = 8.3 Hz, 1H, Ar–H), 7.40 (s, 1H, Ar–H). 13C-NMR 
(CDCl3) (ppm): 20.59 (–CH3), 21.52 (–CH3), 21.63 (–
CH3), 33.82 (–CH2), 35.36 (–CH2), 52.02 (–OCH3), 
56.12 (–OCH3), 70.80 (–CH2), 111.06, 112.97, 119.15, 
127.75, 145.56, 147.42, 149.67, 150.06, 150.66, 151.30, 
166.97 (–CONH–), 173.61 (–COO–). HRMS (ESI) m/z: 
388.18057–17  ppm [M+H]+, calcd. for C20H25N3O5 
387.17942.

Bio‑evaluation methods
Cell culture
PC12 cells were obtained from the Chinese Academy 
of Medical Sciences & Peking Union Medical College. 
The cultures of the PC12 cells were maintained as mon-
olayer in RPMI 1640 supplemented with 10% (v/v) heat 
inactivated (Gibco) horse serum, 5% (v/v) fetal bovine 
serum and 1% (v/v) penicillin/streptomycin (Thermo 
Technologies, New York, NY,USA) and incubated at 
37  °C in a humidified atmosphere with 5% CO2. T-VA 
amide derivatives were dissolved in dimethyl sulfoxide 
(DMSO).

Protective effect on damaged differentiated pc12 cells
The neuroprotective effect of newly synthesized T-VA 
amide derivatives was evaluated in  vitro via the MTT 
method on the differentiated PC12 cells damaged by CoCl2 
with ligustrazine as the positive control. PC12 cells grow-
ing in the logarithmic phase were incubated in the culture 
dishe and allowed to grow to the desired confluence. Then 
the cells were switched to fresh serum-free medium and 
incubated for 14 h. At the end of this incubation, the PC12 
cells were collected and resuspended in 1640 medium sup-
plemented with 10% (v/v) fetal bovine serum, then the cells 
were seeded in poly-l-lysine-coated 96-well culture plates 
at a density of 7 × 103 cells/well and incubated for another 
48 h in the presence of 50 ng/ml NGF.

The differentiated PC12 cells were pretreated with 
serial dilutions of T-VA amide derivatives (60, 30, 15, 7.5, 
3.75 µM) for 36 h, and then exposed to CoCl2 (final con-
centration, 250 mM) for another 12 h. Control differenti-
ated cells were not treated with T-VA amide derivatives 
and CoCl2. At the end of this incubation, 20 μl of 5 mg/ml 
methylthiazol tetrazolium (MTT) was added to each well 
and incubation proceeded at 37 °C for another 4 h. After 
the supernatant medium was removed carefully, 200 μl 
dimethylsulphoxide (DMSO) were added to each well 

and absorbance was measured at 490  nm using a plate 
reader (BIORAD 550 spectrophotometer, Bio-rad Life 
Science Development Ltd., Beijing, China). The prolifera-
tion rates of damaged PC12 cells were calculated by the 
formula [OD490(Compd) − OD490(CoCl2)]/[OD490(NGF) 
− OD490(CoCl2)]  ×  100%; The concentration of the 
compounds which produces a 50% proliferation of sur-
viving cells corresponds to the EC50. And it was calcu-
lated using the following equation: −pEC50 =  log Cmax 
− log 2  ×  (∑P − 0.75 + 0.25Pmax + 0.25Pmin), where 
Cmax = maximum concentration, ∑P = sum of prolifera-
tion rates, Pmax =  maximum value of proliferation rate 
and Pmin = minimum value of proliferation rate [20–22].

Observation of morphologic changes
The changes in cell morphology after treatment with VA-
06 were determined using light microscopy in this assay, 
it was performed as previously described [22]. Differen-
tiation was scored as the cells with one or more growth 
cone tipped neurites greater than 2 cell bodies in length. 
The cell differentiation rate was calculated by the formula 
[the number of differentiated cells]/[the number of total 
cells] ×  100%. Three fields were randomly chosen from 
different wells of three independent experiments. All 
data are expressed as mean ±  standard deviation (SD). 
Statistical analyses were performed using SAS version 9.0 
(SAS Institute Inc., Cary, NC, USA). Between-groups dif-
ferences were assessed using Student t tests and p < 0.05 
was considered significant.
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