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Abstract

Background: Perceptions of food products start when flavor compounds are released from foods, transported and
appropriate senses in the oral and nose are triggered. However, the long-term stability of flavor compounds in food
product has been a major concern in the food industry due to the complex interactions between key food ingredients
(e.g., polysaccharides and proteins). Hence, this study was conducted to formulate emulsion-based beverage using
natural food emulsifiers and to understand the interactions between emulsion compositions and flavor compounds.

Results: The influences of modified starch (x1), whey protein isolate (x2), soursop flavor oil (x3) and deionized water (x4)
on the equilibrium headspace concentration of soursop volatile flavor compounds were evaluated using a
four-component with constrained extreme vertices mixture design. The results indicated that the equilibrium headspace
concentration of soursop flavor compounds were significantly (p < 0.05) influenced by the matrix and structural
compositions of the beverage emulsions. Interface formed using modified starch and whey protein isolate (WPI)
proved to be capable of inhibiting the release of volatile flavor compounds from the oil to the aqueous phase.
Modified starch could retard the overall flavor release through its hydrophobic interactions with volatile flavor
compounds and viscosity enhancement effect. Excessive amount of modified starch was also shown to be detrimental
to the stability of emulsion system. However, both modified starch and WPI showed to be a much more effective
barrier in inhibiting the flavor release of flavor compounds when used as individual emulsifier than as a mixture.

Conclusions: Overall, the mixture design can be practical in elucidating the complex interactions between key food
components and volatile flavor compounds in an emulsion system. These studies will be useful for the manufacturers for
the formulation of an optimum beverage emulsion with desirable emulsion properties and desirable flavor release profile.

Keywords: Mixture design, Modified starch, Whey protein isolate, Soursop beverage emulsion, Polysaccharide-protein
interactions
Background
Flavor is one of the most important components respon-
sible for the overall sensory properties of taste and smell
in any food products (e.g., soft drinks). Among the many
organoleptic quality components, such as color, rheo-
logical properties or packaging, flavor takes a particular
place through stimulating the odor and taste receptors
when eating [1]. Therefore, flavor plays an important role
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in consumer satisfaction, which will subsequently drive
consumers’ acceptance and influences the continued con-
sumption of beverages [2]. However, due to the volatility
and delicate properties of volatile flavor compounds, en-
capsulation of flavor compounds prior to its final applica-
tion as food ingredients is often done [3].
A food emulsion may be defined as a heterogeneous sys-

tem of two immiscible liquid phases, where one of the liq-
uids being dispersed into the other phase [4]. Because
flavor can be one of the most expensive and delicate ingre-
dients in beverage formulations, protection of these labile
compounds from degradation, oxidation and evaporation
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has often a top priority for manufacturers, while allowing a
controlled release from the food matrix [3]. In the fruit-
flavored beverage manufacturing, emulsions have often
been used as a medium to carry oil-based flavoring com-
pounds (e.g., beverage emulsion) or to impart turbidity (e.g.,
cloud emulsion) to the final products [2]. Various proper-
ties of the flavor compounds, such as molecular size, func-
tional groups, shape and volatility, will determine its
interactions with food components and, hence its retention
in the food matrix [5]. Beverage emulsions are also unique
as they are normally prepared in a concentrated form and
then diluted with sugar solution to yield finished bever-
age products [6]. This unique class of emulsion must
have a high degree of stability in both the concentrated
and diluted form, given that as little as 20 mg/L dis-
persed oil phase may be contained in the finished product
[7]. Beverage emulsion is a thermodynamically unstable
system as the free energy during the formation of disper-
sions is often positive, thus the system is susceptible to
destabilize through various mechanisms such as creaming,
flocculation, coalescence, Ostwald ripening and sedimen-
tations [4]. As the surface contact between oil and water is
energetically unfavorable, kinetically stable emulsions can
be produced by the addition of emulsifiers, including syn-
thetic surfactants, proteins, polysaccharides or phospho-
lipids. Emulsifiers can be used to overcome the activation
energy of the system by reducing the interfacial tension
between the two layers and thus, enhancing its stability
over a longer period of time [8].
Gum arabic is the most commonly used emulsifier for

the stabilization of beverage emulsions in the soft drink in-
dustry but problems associated with the variations in mar-
ket price, reliable sources and consistent quality of gum
arabic have led many scientists to search of a replacement
for use in flavored beverages [6]. It has been suggested that
new sources of natural biopolymer such as alginate, man-
nan, corn fiber gum, durian seed gum, fish protein hydrol-
ysate and buckwheat protein can be used as alternative
emulsifiers [9-14]. Nevertheless, among the numerous food
biopolymers, hydrophobically modified starch has been
touted as one of the most promising biopolymer replace-
ment for gum arabic [15]. Previous studies have indicated
that modified starch is mildly anionic in aqueous solutions
and has a surface activity that is almost as high as that of
gum arabic [16]. The hydrophobic octenyl succinic anhyd-
ride (OSA) anchor itself to the oil–water (o/w) interface,
while hydrophilic starch chains extend into the aqueous so-
lution to prevent droplets coalescence and flocculation
through steric repulsion mechanism [17]. They formed a
strong film at the o/w interface, capable of resisting re-
agglomeration of newly formed emulsion droplets [18].
One important aspect of modified starch is its ability to act
as both an emulsifier and a thickener in stabilizing the fla-
vor emulsion system [19].
Proteins have often been applied as emulsifiers in food
emulsions because they naturally have hydrophobic and
hydrophilic regions and are therefore surface-active [20].
The ability to scavenge free radicals to inhibit lipid oxida-
tion through cysteine residues, disulfide bonds and thiol
function groups has also spurred interest in formulating
whey protein isolate (WPI)-stabilized emulsion systems
[8]. Consequently, WPI have found much favor in the food
emulsion industry due to their unique properties, such as
antioxidant activity and high nutritional value, which can
improve health and prevent disease [8,21]. Whey protein
isolate is able to adsorb rapidly onto the o/w interface to
form a protective film to provide protection for emulsion
droplets through electrostatic repulsion [4]. Additionally,
WPI-stabilized emulsion containing citral, a major flavor
component of citrus oils, was reported to be much more
stable against oxidation than comparable emulsion pro-
duced with gum arabic [22].
Flavor release is defined as a flavor compound transport

process from the matrix to the vapor phase [23]. Thus, a
good knowledge of the physicochemical interactions oc-
curring between flavor compounds and other major food
components is required for the control of food flavoring
and, more particularly, for understanding the phenomena
involved in the release of aroma compounds in the mouth.
In addition, the composition of the food matrix will deter-
mine the extent and type of flavor compounds it is in-
clined to bind [5]. The variations of food components in
different food matrices have contribute significantly to dif-
ferent interactions between the flavor compounds with
other food components, which consequently influence the
equilibrium headspace concentration of flavor compounds
[1]. Interactions between flavor compounds and other
major food components such as proteins, lipids and poly-
saccharides, have also been widely documented [24-26].
Mirhosseini et al. [26] reported that gum arabic and xan-
than gum had a significant (p < 0.05) effect on the total fla-
vor release and release pattern of α-pinene and octanal,
though the different degree of interactions were dependent
on the physicochemical properties of the flavor compounds
[27]. While Mao et al. [24] and Chen [28] reported on the
influence of fat content on the emulsion texture, which
consequently affects the creaminess, smoothness and how
flavor is perceived during consumption. The presence of
proteins in the system may also often decrease the volatility
of flavor compounds through reversible and irreversible
binding mechanisms [29]. In addition, the stability of flavor
compounds has often been associated with the quality and
acceptability of food products [3].
The stability of flavor compounds and its release pattern

from food matrix (e.g., emulsions) have been extensively
studied due to its impact on the quality and acceptability
of food products [30-32]. Nevertheless, there is a relatively
poor understanding of how different composition of major



Table 1 Four components constrained mixture design

Run Modified starch
(% w/w)

Whey protein
isolate (% w/w)

Flavor oil
(% w/w)

Water
(% w/w)

1 5.00 2.00 15.00 74.40

2 10.25 1.50 7.50 77.15

3 10.25 0.50 7.50 78.15

4 5.00 2.00 15.00 74.40

5 5.00 2.00 5.00 84.40

6 5.00 0.00 5.00 86.40

7 10.25 0.50 12.50 73.15

8 5.00 0.00 5.00 86.40

9 12.00 2.00 5.00 77.40

10 12.00 2.00 15.00 67.40

11 6.75 1.50 7.50 80.65

12 6.75 1.50 7.50 80.65

13 10.25 0.50 12.50 73.15

14 10.25 0.50 7.50 78.15

15 12.00 0.00 5.00 79.40

16 6.75 0.50 12.50 76.65

17 12.00 2.00 15.00 67.40

18 5.00 2.00 5.00 84.40

19 5.00 0.00 15.00 76.40

20* 8.50 1.00 10.00 76.90

21 6.75 0.50 7.50 81.65

22 12.00 0.00 5.00 79.40

23 6.75 0.50 12.50 76.65

24 10.25 1.50 12.50 72.15

25 10.25 1.50 7.50 77.15

26 6.75 1.50 12.50 75.65

27 12.00 2.00 5.00 77.40

28 10.25 1.50 12.50 72.15

29 6.75 1.50 12.50 75.65

30 12.00 0.00 15.00 69.40

31 5.00 0.00 15.00 76.40

32 6.75 0.50 7.50 81.65

33* 8.50 1.00 10.00 76.90

34 12.00 0.00 15.00 69.40

*center point.
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food components such as starch and protein will affect the
physicochemical properties and equilibrium headspace
concentration of soursop flavor compounds in a beverage
emulsion system. In addition, the lack of systematic stud-
ies of these interactions has also prompted a need for this
study. Therefore, a four-component [modified starch (5-
12% w/w), WPI (0-2% w/w), soursop oil content (5-15%
w/w) and deionized water (67.4-86.4% w/w)] with con-
strained extreme vertices design was used for a systematic
and organized study on the effect of emulsion components
on the equilibrium headspace concentration of soursop
volatile flavor compounds. The information and know-
ledge gained from this study will contribute positively for
the beverage industries.

Results and discussion
Preliminary study
Based on previous study [33], a total of 37 volatile com-
pounds were identified by GC ×GC-TOFMS as key vola-
tile compounds of soursop fruit. However, in this study,
a synthetic oil-based soursop flavor was used as the oil
phase for the formation of oil-in-water emulsion system.
This would facilitate the studies of the efficiencies of both
modified starch and WPI as emulsifiers and as protective
films to impede the transfer of volatile soursop flavor com-
pounds into vapor phase. Thirteen volatile flavor com-
pounds namely, methyl butanoate, ethyl butanoate, methyl
2-butenoate, 1-butanol, methyl hexanoate, (E)-2-hexenal,
ethyl hexanoate, methyl 2-hexenoate, (Z)-3-hexen-1-ol, lin-
alool, butanoic acid, hexanoic acid and methyl (E)-cinna-
mate which represented about 85% of the total flavor
compounds of soursop fruit were chosen and blended to
produce the synthetic soursop flavor. Thus, these flavor
compounds will be used as the main representative of the
soursop volatile flavor compounds and the peak area of these
flavor compounds were considered as response variables.
Initial experiments were also conducted to study the in-

fluence of several variables and to establish the most favor-
able emulsion preparation conditions (e.g., speed of the
homogenizer, duration of the shearing and pressure of the
high-pressure homogenizer). The results showed that a
fine emulsification with a good creaming stability could be
achieved by mixing the emulsion for 1 min using a high-
shear homogenizer (6,000 rpm) before being sent through
a high-pressure homogenizer for 2 cycles at 200 bar.

Fitting the regression models
The use of the mixture design (Table 1) has allowed the
study of the possible interaction effects between main
emulsion components as a function of the equilibrium
headspace concentration of soursop flavor compounds.
The estimated regression coefficients of four dependent
variables (modified starch, WPI, soursop oil and deionized
water), along with the corresponding R2, adjusted R2 and
p-value of regressions are given in Table 2. The individual
significance probabilities of each parameter term and the
F-ratio are shown in Table 3. Each response (Yi) was
assessed as a function of interaction effects of modified
starch (x1), WPI (x2), soursop flavor oil (x3) and deionized
water (x4).
The mixture design analysis has shown that the regres-

sion models were significantly (p < 0.05) fitted for all of
the flavor compounds studied, with relatively high R2



Table 2 Regression coefficients, R2, adjusted R2 and probability values for the final reduced models

Regression
coefficients

Methyl
butanoate

(Y1)

Ethyl butanoate
(Y2)

Methyl
2-butenoate

(Y3)

1-Butanol
(Y4)

Methyl
hexanoate

(Y5)

(E)-2-
Hexenal
(Y6)

Ethyl
hexanoate

(Y7)

Methyl
2-hexenoate

(Y8)

(Z)-3-
Hexen-1-ol

(Y9)

Linalool
(Y10)

Butanoic
acid
(Y11)

Hexanoic
acid
(Y12)

Methyl (E)-
cinnamate

(Y13)

b1 684 −308 −14971943 −23 −22139939 −4518678 −832147 −123565007 −2306039 −2652877 −21532 −20272 −132872

b2 −94586 −7369 −1456816 21661 −1171614 −471769 −100453 −10924092 −253322 −303103 −4913 −1731 −17110

b3 5605 570 5306117 340 3901129 1577380 317050 39123203 802492 922911 870 705 44197

b4 341 54 −48735 4 −106497 −15210 −2572 −447916 −7805 −9112 −176 −177 −503

b12 −407882 −47168 −2173868 −4088 −319723 −646450 −136281 −14506798 −324820 −397701 −20804 −18969 −21533

b13 3098 - −534996 - −942085 −153867 −27538 −4596158 −79378 −79924 1105 835 −2589

b14 - - 134465 - 259193 40684 7092 1181480 20827 23575 282 264 1163

b23 228757 29506 2148382 1273 1437389 636873 128996 15712955 325659 373674 10777 10984 17876

b24 - - - −241 - - - - - - - - -

b34 - - - −4 - - - - - - - - -

b123 2288 238 - 32 - - - - - - 133 123 -

b124 5274 610 - 49 - - - - - - 271 245 -

b134 −49 - - - - - - - - - −14 −10 -

b234 −3074 −398 - −21 - - - - - - −146 −151 -

b1123 - - - - - - - - - 38 - - 7

b1124 - - −312 - −360 −100 −21 −2508 −54 −60 - - −3

b1134 - - 1308 - 1124 388 77 9837 198 225 - - 11

b2234 - - −14831 - −9959 −4401 −890 −108565 −2248 −2560 - - −120

b1223 - - 5845 - 3551 1795 342 42061 871 731 - - -

b1224 - - 17980 - 6977 5413 1128 125490 2757 3306 - - 174

b1334 - - −577 - - −174 −38 −3757 −88 −109 - - −6

Model Special
cubic

Special
cubic

Special
quartic

Special
cubic

Special
quartic

Special
quartic

Special
quartic

Special
quartic

Special
quartic

Special
quartic

Special
cubic

Special
cubic

Special
quartic

R2 0.981 0.898 0.957 0.943 0.982 0.990 0.831 0.952 0.978 0.937 0.978 0.940 0.866

R2 (adj.) 0.970 0.860 0.924 0.915 0.970 0.982 0.709 0.916 0.960 0.885 0.964 0.906 0.769

Regression
(p-value)

0.000a 0.000a 0.000a 0.000a 0.000a 0.000a 0.000a 0.000a 0.000a 0.000a 0.000a 0.000a 0.000a

bi represents the estimated regression coefficients for the main linear effects. bij, bijk and bijkl represents the estimated regression coefficient for the interaction effects, respectively.
1: Modified starch; 2: WPI; 3: Soursop oil; 4: Deionized water.
aSignificant (p < 0.05).
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Table 3 The significance probability (p-value, F-value) of regression coefficients in the final reduced models

Variables (response area, cm2) Interaction effects

x1x2 x1x3 x1x4 x2x3 x2x4 x3x4 x1x2x3 x1x2x4 x1x3x4 x2x3x4 x1x1x2x3 x1x1x2x4 x1x1x3x4 x2x2x3x4 x1x2x2x3 x1x2x2x4 x1x3x3x4

Methyl butanoate p-value 0.000* 0.018* - 0.000* - - 0.000* 0.000* 0.023* 0.000* - - - - - - -

F-value 37.700 6.76 62.410 22.000 37.700 6.150 62.568

Ethyl butanoate p-value 0.001* - - 0.000* - - 0.003* 0.001* - 0.000* - - - - - - -

F-value 14.364 17.808 11.628 14.364 17.978

Methyl 2-butenoate p-value 0.006* 0.013* 0.016* 0.007* - - - - - - - 0.018* 0.008* 0.007* 0.005* 0.007* 0.006*

F-value 10.049 7.784 7.182 9.364 6.684 9.120 9.364 10.240 9.425 9.672

1-Butanol p-value 0.002* - - 0.024* 0.038* 0.013* 0.000* 0.002* - 0.009* - - - - - - -

F-value 12.816 5.904 4.884 7.453 17.978 12.390 8.410

Methyl hexanoate p-value 0.000* 0.000* 0.000* 0.000* - - - - - - - 0.000* 0.000* 0.000* 0.000* 0.000* -

F-value 53.582 76.738 81.000 74.650 74.132 77.969 74.477 75.516 75.690

(E)-2-Hexenal p-value 0.000* 0.000* 0.000* 0.000* - - - - - - - 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

F-value 24.900 23.717 25.100 25.000 23.136 25.301 25.100 29.268 24.900 24.010

Ethyl hexanoate p-value 0.000* 0.003* 0.003* 0.001* - - - - - - - 0.001* 0.001* 0.001* 0.001* 0.001* 0.000*

F-value 18.063 11.560 11.560 16.484 15.288 15.840 16.403 17.057 17.472 18.490

Methyl 2-hexenoate p-value 0.000* 0.000* 0.000* 0.000* - - - - - - - 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

F-value 31.472 39.816 39.816 35.046 32.036 36.361 35.165 37.454 32.490 28.837

(Z)-3-Hexen-1-ol p-value 0.000* 0.000* 0.000* 0.000* - - - - - - - 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

F-value 28.196 26.214 27.040 28.837 29.268 28.730 28.944 30.470 28.730 27.668

Linalool p-value 0.000* 0.000* 0.000* 0.000* - - - - - - 0.007* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

F-value 39.063 25.604 36.603 39.564 9.548 37.088 39.438 39.188 21.160 39.816 37.210

Butanoic acid p-value 0.000* 0.000* 0.000* 0.000* - - 0.000* 0.000* 0.000* 0.000* - - - - - - -

F-value 33.293 68.063 42.120 43.824 26.420 33.989 72.590 44.890

Hexanoic acid p-value 0.016* 0.005* 0.006* 0.002* - - 0.031* 0.016* 0.008* 0.002* - - - - - - -

F-value 6.970 9.797 9.797 12.390 5.429 7.023 8.762 13.032

Methyl (E)-cinnamate p-value 0.001* 0.000* 0.000* 0.000* - - - - - - 0.000* 0.000* 0.000* 0.000* - 0.000* 0.001*

F-value 16.403 24.206 49.703 26.010 23.136 29.594 31.923 26.112 19.184 14.213

1: Modified starch; 2: WPI; 3: Soursop oil; 4: Deionized water.
*Significant at p < 0.05.
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values, ranging between 0.831 to 0.990, which indicated
that the regression equations could adequately explain
the relationship between the dependent factors and the
response variables observed. The results clearly showed
that the equilibrium headspace concentration of soursop
flavor compounds was significantly (p < 0.05) affected by
the proportion of main emulsion components. For in-
stance, emulsions containing similar amount of WPI and
soursop flavor oil but different amount of modified starch
(formulations 28 and 29) showed a significant (p < 0.05)
different equilibrium headspace concentration of soursop
flavor compounds. This could be due to the different
interaction effects between flavor compounds and hydro-
colloids used in the formulations. In addition, the different
degree of interaction is dependent on the physicochemical
characteristics of the flavor compounds [34]. Meanwhile,
interactions of modified starch and water (x1 × x4), and
WPI and water (x2 × x4) were found to have the most and
least significant (p < 0.05) effects on the variations of me-
thyl hexanoate and 1-butanol, respectively.

The interaction effects of bi-components
Interactions between two components such as modified
starch and WPI (x1 × x2), WPI and water (x2 × x4) and
soursop oil with water (x3 × x4) had significant (p < 0.05)
effects on the equilibrium headspace concentrations of
soursop beverage emulsion (Table 3), whereas the regres-
sion coefficients in Table 2 indicated that these interac-
tions would have antagonistic effects on the flavor release
from the emulsion matrix. Accordingly, this analysis
showed that the films that formed using the combination
of both modified starch and WPI (x1 × x2) were capable of
providing a barrier to inhibit flavor release of volatile fla-
vor compounds. In addition, the negative effect of flavor
oil and water (x3 × x4) on 1-butanol could be due to the
polarity attribute of the compound, which could give it a
higher affinity for the water phase than the oil phase.
Meanwhile, the interactions of modified starch and fla-

vor oil (x1 × x3) yielded negative (p < 0.05) effects on all of
the volatile flavor compounds except for methyl buta-
noate, butanoic acid and hexanoic acid. This result could
be explained by the fact that the hydrophobic fraction of
the modified starch was able to bind the hydrophobic (log
P between 1.32 to 3.38) flavor compounds at the o/w
interface and, hence, retained them in the oil phase. In
addition, the negative effect of the modified starch on the
overall flavor release may be attributed to the physical en-
trapment of the flavor compound molecules within the
emulsion matrix through its viscosity enhancement effect,
which retards the flavor release of volatile compounds
[35,36]. Additionally, the relatively more polar volatile fla-
vor compounds, such as methyl butanoate, butanoic acid
and hexanoic acid, could be less strongly bound by the
modified starch.
The interactions between modified starch and water
(x1 × x4) and between WPI and soursop oil (x2 × x3) had
positive significant (p < 0.05) effects on all the target fla-
vor volatile compounds (Tables 2 and 3). Thus, these re-
sults indicated that the interactions between WPI
molecules and all of the volatile flavor compounds were
either very weak or reversible at low pH [37,38]. Lubbers
et al. [37] reported that, in most cases, the chemical inter-
actions between proteins and flavor compounds involved
weak hydrophobic and hydrogen bonding. In addition, the
soursop volatile flavor compounds are classified as having
short to medium carbon chain length. Out of ethyl hex-
anoate, ethyl octanoate and ethyl nonanoate, only ethyl
nonanoate was found to have significant (p < 0.05) binding
with beta-lactoglobulin [38]. Therefore, the results demon-
strated that, within the same chemical class, the affinity of
beta-lactoglobulin increased with increasing carbon chain
length or hydrophobicity, which suggested hydrophobic
interactions.

The interaction effects of tri-components
For interactions involving three components, the interac-
tions involving modified starch, WPI and soursop flavor oil
(x1 × x2 × x3) and the interactions involving modified starch,
WPI and water (x1 × x2 × x4) had significant (p < 0.05) posi-
tive effects on the equilibrium headspace concentrations of
methyl butanoate, ethyl butanoate, 1-butanol, butanoic acid
and hexanoic acid (Tables 2 and 3). Galazka et al. [39] sug-
gested that high pressure treatment could induce the
changes in protein-polysaccharide interactions. The pres-
ence of a polysaccharide could have either protected the
protein against pressure-induced unfolding or enabled the
pressure-denatured beta-lactoglobulin to regain some of its
secondary structures [39]. With the lack of hydrophobic
binding sites, the flavor compounds would be less bound
and could contribute to a higher equilibrium concentration
of soursop flavor in the headspace.
On the one hand, the interactions of sole emulsifier sys-

tems with flavor oil and water, (x1 × x3 × x4 and x2 × x3 × x4)
had shown significant (p < 0.05) negative effects on the
equilibrium headspace concentration of soursop flavor
compounds (Tables 2 and 3). The higher F-values (Table 3)
illustrated that both modified starch and WPI had higher
effectiveness in controlling the equilibrium headspace con-
centration of soursop flavor compounds when used as sole
emulsifiers (x1 × x3 × x4 and x2 × x3 × x4) rather than as
mixed biopolymers (x1 × x2 × x3). As shown in Table 3,
WPI alone (x2 × x3 × x4) was found to be much more effect-
ive in controlling the equilibrium headspace concentrations
of methyl butanoate, ethyl butanoate, butanoic acid and
hexanoic acid, when compared with the mixed biopolymers
system (x1 × x2 × x3). Similarly, modified starch-stabilized
emulsion (x1 × x3 × x4) was effective in retarding the flavor
release of butanoic acid and hexanoic acid.



Figure 1 Mixture contour plots of three soursop flavor
compounds. Diamond-shaped subregion is the constrained
experimental region.
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Meanwhile, the results indicated that the interactions of
modified starch, WPI and flavor oil (x1 × x1 × x2 × x3) as
well as modified starch with flavor and water (x1 × x1 ×
x3 × x4) had significant (p < 0.05) positive effects on the
equilibrium headspace concentration of soursop flavor
compounds (Table 2). This result could be due to the ex-
cess of modified starch in the system, which caused bridg-
ing flocculation and hence destabilizing the emulsion
system [4,40]. Additionally, the interactions of WPI with
modified starch and flavor oil (x1 × x2 × x2 × x3) as well as
WPI with modified starch and water (x1 × x2 × x2 × x4)
were also shown to have a significant (p < 0.05) positive
impact on the release of volatile flavors from the concen-
trated beverage emulsion.
Alternatively, the interactions of WPI, flavor oil and

water (x2 × x2 × x3 × x4) and between modified starch,
soursop oil and water (x1 × x3 × x3 × x4) had significant
(p < 0.05) negative effects on the equilibrium headspace
concentration of soursop flavor compounds (Tables 2
and 3). As shown in Table 3, a single emulsifier system
had a higher effectiveness in retarding the flavor release of
flavor compounds. Besides that, Jouenne and Crouzet [41]
showed the flexibility modification of beta-lactoglobulin
between pH 3.0 and 9.0, which had contributed signifi-
cantly (p < 0.05) to an increased retention of flavor com-
pounds, was due to the higher accessibility of hydrophobic
binding sites on the beta-lactoglobulin molecule. While
Guichard [38] reported two different binding sites for fla-
vor compounds on beta-lactoglobulin molecule.

Optimization and validation of final reduced models for
desirable equilibrium headspace concentration of soursop
volatile flavor compounds
The optimization procedure for the equilibrium headspace
concentration is determined by the observation of the low-
est possible peak area for each of the target volatile flavor
compounds. The contour plots were drawn by using
the center points of each of the dependent interval
(Figures 1,2,3 and 4). A numerical optimization was also
performed for the simultaneous multiple optimization of
the response variables resulting in the desirable equilibrium
headspace concentration of soursop volatile flavor com-
pounds. The multiple optimization results showed that the
minimum overall release of soursop volatile flavor com-
pounds could be achieved when the emulsion was formu-
lated using 8.56% (w/w) modified starch, 1.13% (w/w) WPI,
10.27% (w/w) soursop flavor oil and 76.45% (w/w) water.
The peak areas estimated for methyl butanoate, ethyl buta-
noate, methyl 2-butenoate, 1-butanol, methyl hexanoate,
(E)-2-hexenal, ethyl hexanoate, methyl 2-hexenoate,
(Z)-3-hexen-1-ol, linalool, butanoic acid, hexanoic acid
and methyl (E)-cinnamate were 3.18 × 104, 552.01, 4.09 ×
104, 503.03, 6.71 × 104, 7433.83, 254.97, 2.74 × 105, 2616.52,
2294.39, 1239.17, 1558.36 and 198.50, respectively.
Previous studies [26,38,42] have also demonstrated that
interfacial interactions between hydrocolloids/emulsifiers
and aroma compounds could limit the transfer of hydro-
phobic compounds from oil to water. However, formula-
tions with high excess of modified starch were susceptible
to destabilization via depletion flocculation [4,40]. To verify
the adequacy of the final regression models, experimental
values were statistically compared with the predicted values
by using a two-sample T-test. No significant difference



Figure 3 Mixture contour plots of three soursop flavor
compounds. Diamond-shaped subregion is the constrained
experimental region.Figure 2 Mixture contour plots of three soursop flavor

compounds. Diamond-shaped subregion is the constrained
experimental region.
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(p > 0.05) was reported between the actual and the pre-
dicted values.
Conclusions
The present study showed that the equilibrium head-
space concentration of soursop volatile flavor com-
pounds were significantly (p < 0.05) influenced by the
composition of soursop beverage emulsion. Interactions
between modified starch and protein were found to
have antagonistic effects on the flavor release from the
emulsion matrix. This might be explained by the fact
that the film formed using the combination of both
modified starch and WPI were capable of providing a
barrier to inhibit the release of volatile flavor com-
pounds from the oil to the aqueous phase. The negative
effect of modified starch on the overall flavor release
may also be attributed to the physical entrapment of fla-
vor compound molecules through its viscosity enhance-
ment effect, which impeded the flavor release of volatile
compounds across the emulsion matrix. Yet, the present
study also revealed significant differences between the
use of individual emulsifiers and combination of both
emulsifiers. The F-values for systems containing single
emulsifier were higher than those containing a mixture



Figure 4 Mixture contour plots of four soursop flavor compounds. Diamond-shaped subregion is the constrained experimental region.
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of both modified starch and WPI. The pressure-induced
protein-polysaccharide interactions could have contrib-
uted to the lower hydrophobic binding sites on the
beta-lactoglobulin molecules, which explained the posi-
tive effects of interaction between WPI and flavor oil
(x2 × x3) for all the flavor compounds studied. In contrast,
both modified starch and WPI showed to be a much more
effective barrier in inhibiting the release of all the soursop
flavor compounds studied when used as individual emulsi-
fier. The current study revealed that the polar volatile
compound such as 1-butanol showed a relatively higher
affinity for water phase than the oil phase. Thus, it was
less bound by both modified starch and WPI. This study
showed the importance of understanding the interaction
effects between emulsion components for developing an
optimum beverage emulsion with desirable flavor release
profile. In addition, it also showed that the general equilib-
rium headspace concentration of soursop flavor com-
pounds from the emulsion beverage could be modified by
the proportion of the main emulsion components.

Experimentals
Chemicals and materials
The octenyl succinate (OSA) modified waxy maize starch
(Purity Gum 1773) was a gift from National Starch and
Chemical (Bridgewater, NJ, USA). Whey protein isolate
(Provon A190) was provided by Glanbia Nutritionals
(Monroe, WI, USA). The soursop flavor oil was provided
by Flavor Inn Corporation (Selangor, Malaysia). The palm
olein was purchased from a local retailer. Citric acid
(Sigma-Aldrich, St. Louis, MO, USA) was used to adjust
pH of emulsion. Sodium benzoate (Sigma-Aldrich, St.
Louis, MO, USA) and potassium sorbate (Acros Organics,
NJ, USA) were used as preservatives in the beverage emul-
sion system. Sodium chloride (NaCl) was purchased from
Merck (Darmstadt, Germany). Deionized water was
used to prepare the beverage emulsions. The solid-
phase assembly holder, 75 μm carboxen/polydimethylsi-
loxane (CAR/PDMS) fiber, butyl rubber septa, 20-mL
glass vials and aluminum vial crimp seals were supplied
by Supelco Inc. (Bellefonte, PA, USA).

Preparation of soursop beverage emulsions
In the present study, 17 soursop beverage emulsions
composed of modified starch (5-12% w/w), WPI (0-2%
w/w), soursop oil (5-15% w/w), deionized water (67.4-
86.4% w/w), vegetable oil (3% w/w), sodium benzoate
(0.1% w/w), potassium sorbate (0.1% w/w) and citric acid
(0.4% w/w) were prepared for the optimization proced-
ure based on a four-component, constrained extreme
vertices mixture design (Table 1). To prepare the aque-
ous phase, sodium benzoate, potassium sorbate and cit-
ric acid were sequentially dispersed in deionized water
that was kept stirred using a magnetic stirrer. Subse-
quently, WPI and modified starch were also dispersed in
succession in the deionized water. The mixture was then
left at room temperature while being stirred for 2 hours
to facilitate hydration. While mixing the water phase
using a high speed Waring blender (32BL80, New Hartford,
USA), the soursop flavor oil was gradually added into the
aqueous phase to form an initial coarse emulsion [43]. Fine
emulsification (e.g., small average droplet size of < 1 μm
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with a narrow particle size distribution) was achieved by
subjecting initial coarse emulsion to pre-homogenization
using a high-shear homogenizer (Silverson L4R, Bucking-
hamshire, UK) for 1 min at 6,000 rpm and then passing it
through a high-pressure homogenizer (APV, Crawley, UK)
for 2 cycles at 200 bar.

Equilibrium headspace analysis using HS-SPME
For the HS-SPME analysis, 5 g of diluted soursop bever-
age emulsion (5% w/w) was transferred into a 20-mL vial
containing NaCl (30% w/w) and a micro-magnetic stir-
ring bar. Subsequently, the vial was sealed with a Teflon-
lined septum and immersed in a water bath at a fixed
temperature, 25°C. The sample was continuously stirred
for 15 min at 25°C prior to sampling using CAR/PDMS
fiber, which was manually exposed to the sample head-
space for 10 min to reach equilibrium. The sample was
continuously agitated with a magnetic stirring bar during
the extraction process to allow a more certain establish-
ment of equilibrium conditions. Subsequently, the fiber
was withdrawn into the needle then introduced into the
gas chromatography injection port and held there for
5 min to completely desorb the volatile flavor com-
pounds [44].

Gas chromatography-flame ionization detector
(GC-FID) conditions
The quantitative equilibrium headspace analysis of sour-
sop volatile flavor compounds was performed using an
Agilent 6890N GC (Palo Alto, CA, USA) equipped with
a flame ionization detector (FID) and a DB-Wax capil-
lary column (i.d. = 0.25 mm, length = 30 m, film thick-
ness = 0.25 μm) (J & W Scientific, Folsom, CA, USA).
The GC injection port was equipped with a 0.75 mm i.d.
liner (Supelco, Bellefonte, PA, USA) to minimize peak
broadening. For the equilibrium headspace analysis of
soursop beverage emulsion, the injection was performed
in a splitless mode for 5 min at 250°C. The flow rate of
the carrier gas, helium, was set at a constant flow rate of
1.4 mL/min. The oven temperature was programmed
at 40°C isothermally for 3 min, then ramped to 120°C at
2°C/min and subsequently raised up to 250°C at 20°C/
min and held for 5 min at a final temperature of 250°C.
Injector and detector temperatures were 250°C and 270°C,
respectively [33,44].

Experimental design and data analysis
A four-component with constrained extreme vertices de-
sign was used to formulate the soursop beverage emul-
sions. In this study, a mixture design comprising 17
soursop beverage emulsion formulations using modified
starch (x1), WPI (x2), soursop flavor oil (x3), deionized
water (x4), vegetable oil, sodium benzoate, potassium sor-
bate and citric acid were constructed to study the effect of
different concentrations of modified starch, WPI, soursop
flavor oil and deionized water on the equilibrium head-
space concentration of volatile flavor compounds of sour-
sop. In mixture design, all of the components and their
levels are not independent of each other, as the sum of the
proportions of the mixture components is always 1 [45].
The minimum and maximum levels of each mixture
component were modified starch (5-12% w/w), WPI (0-
2% w/w), soursop oil (5-15% w/w) and deionized water
(86.4-67.4% w/w). The experiments were replicated and
randomized in order to minimize the effect of unexplained
variability in the actual responses due to extraneous fac-
tors. Analysis of variance (ANOVA) and regression surface
analysis were conducted to determine the statistical sig-
nificance of the model terms and to fit a regression rela-
tionship relating the experimental data to dependent
variables resulting in desirable goals [43]. The experi-
mental design and data analysis were performed using
Minitab release 14.20 statistical package (Minitab Inc.,
State College, PA, USA).

Optimization and validation procedures
A numerical optimization was carried out using response
optimizer function in the Minitab software for simultan-
eous optimization and to determine the exact optimum
levels of these variables (x1, x2, x3 and x4) leading to the de-
sired equilibrium headspace concentration of soursop flavor
compounds. In this study, a low release of volatile flavor
compounds from the concentrated beverage emulsion
would be considered to be an ideal system. The adequacy
of the regression equations was checked by comparing the
experimental data with predicted values obtained from the
equations [43].
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