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Abstract

Background: Mycobacterium tuberculosis (M.tb) is the causative agent of tuberculosis, killing ~1.7 million people
annually. The remarkable capacity of this pathogen to escape the host immune system for decades and then to
cause active tuberculosis disease, makes M.tb a successful pathogen. Currently available anti-mycobacterial therapy
has poor compliance due to requirement of prolonged treatment resulting in accelerated emergence of drug
resistant strains. Hence, there is an urgent need to identify new chemical entities with novel mechanism of action
and potent activity against the drug resistant strains.

Results: This study describes novel computational models developed for predicting inhibitors against both
replicative and non-replicative phase of drug-tolerant M.tb under carbon starvation stage. These models were
trained on highly diverse dataset of 2135 compounds using four classes of binary fingerprint namely PubChem,
MACCS, EState, SubStructure. We achieved the best performance Matthews correlation coefficient (MCC) of 0.45
using the model based on MACCS fingerprints for replicative phase inhibitor dataset. In case of non-replicative
phase, Hybrid model based on PubChem, MACCS, EState, SubStructure fingerprints performed better with
maximum MCC value of 0.28. In this study, we have shown that molecular weight, polar surface area and rotatable
bond count of inhibitors (replicating and non-replicating phase) are significantly different from non-inhibitors. The
fragment analysis suggests that substructures like hetero_N_nonbasic, heterocyclic, carboxylic_ester, and
hetero_N_basic_no_H are predominant in replicating phase inhibitors while hetero_O, ketone, secondary_mixed_amine
are preferred in the non-replicative phase inhibitors. It was observed that nitro, alkyne, and enamine are important for
the molecules inhibiting bacilli residing in both the phases. In this study, we introduced a new algorithm based on
Matthews correlation coefficient called MCCA for feature selection and found that this algorithm is better or comparable
to frequency based approach.

Conclusion: In this study, we have developed computational models to predict phase specific inhibitors against
drug resistant strains of M.tb grown under carbon starvation. Based on simple molecular properties, we have
derived some rules, which would be useful in robust identification of tuberculosis inhibitors. Based on these
observations, we have developed a webserver for predicting inhibitors against drug tolerant M.tb H37Rv available
at http://crdd.osdd.net/oscadd/mdri/.
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Introduction
Tuberculosis (TB), a disease caused by M.tb kills around
1.7 million people every year despite the availability of
effective chemotherapy for more than half a century [1].
The antibiotic resistant strains of M.tb have arisen pri-
marily due to poor compliance resulting from prolonged
therapy [2]. The emergence of multiple drug-resistant
(MDR), extensive drug-resistant (XDR) strains, and its
association with HIV has severely affected the fight
against TB [3]. Mathematical models have predicted that
the MDR-TB and XDR-TB epidemics have the potential
to further expand, thus threatening the success of TB
control programs attained over last few decades [4-6].
In humans, the pathogenic cycle of TB consists of three

phases [7]: i) an active TB disease phase with actively
replicating bacteria; ii) a latent phase wherein bacteria
achieves a phenotypically distinct drug resistant state; and
iii) a reactivation phase. The active TB disease phase is
characterized by exponential increase of the pathogen,
and latent phase is characterized by dormant phase in
which pathogen remains metabolically quiescent and is
not infectious. However, the reactivation phase is charac-
terized by transition of latent infection into active TB dis-
ease. The reactivation of the disease occur in nearly 10%
of patients with functional immune system and no separ-
ate dataset of inhibitors for this phase of pathogenic cycle
is available. Therefore, in this study, we have used two
phase inhibitors namely active and latent phase.
In past, researchers across the globe have deposited high

throughput experimental data from M.tb growth inhib-
ition assays. In PubChem, numerous datasets consisting of
both the specific target based as well as cell-based inhi-
bition assays are available. Utilizing these datasets, few
computational models have been developed in past [8-11].
However, these studies are of little significance as they
failed to contemplate the effect of potential hits on the
drug-resistant M.tb strains grown under nutrient starva-
tion condition. Furthermore, these studies does not distin-
guish the inhibitors based on their activity in different
phase of TB. Therefore, it is important to develop new
theoretical models for predicting inhibitors that would be
effective against replicative as well as non-replicative
drug-resistant M.tb and could potentially treat active TB
patients as well as latently infected individuals.
Experimental techniques used in identification of inhibi-

tors of M.tb growth are very expensive, time-consuming,
tedious and requires sophisticated infrastructure (BSL-3)
for mitigation of risk of infection. Thus, there is an urgent
need to develop in-silico models for predicting inhibitors
against drug-tolerant M.tb. In past, a number of target
based models have been developed using QSAR and
docking [12-16] for identification of novel inhibitors
against M.tb. However, impermeability of chemical com-
pounds to the mycobacterial cell wall hindered them to
act as good lead molecules. To the best of our knowledge,
no attempt has been made to develop prediction models
against phase specific drug-tolerant M.tb.
Despite the enormous progress in computational and

medicinal chemistry, only few webservers namely KiDoQ
[17], GDoQ [18] and CDD [19] for predicting the effi-
cacy of potential antimycobacterial drug like molecules
are freely available to the scientific community. In order
to assist researchers in discovering new chemical entity
(NCE) against tuberculosis, a systematic algorithm has
been developed to predict the inhibitors of replicative
and non-replicative drug tolerant M.tb H37Rv.

Methods
Data source
Datasets were created from PubChem confirmatory Bio-
Assay [AID-492952 (replicating), and AID-488890 (non-
replicating)] screens of drug tolerant M.tb H37Rv in carbon
starvation model [20,21]. Although in past, hypoxia induced
model have been used for compound screening but only
AID-488890 has been used to study carbon starvation
model of persistence. Since, the behaviour of compounds is
different under different physiological conditions, therefore
it is extremely important to identify and explore the struc-
ture activity relationship (SAR) of inhibitors against this
pathogen in carbon starvation stage. The BioAssay (AID-
488890) involved primary screening of more than 3 lakh
compounds that identified 13,177 active compounds. This
screening identified four classes of inhibitors: 1) inhibitors
of viability under carbon-starvation, 2) inhibitors of transi-
tion from carbon-starved to replicating state, 3) inhibitors
of outgrowth, and 4) quenchers of GFP fluorescence used
as reporter of outgrowth. From these 13177 compounds, a
total of 2294 compounds were selected for confirmatory
screening based on class-I and class-II inhibitors. In both
BioAssay, compounds that showed >30% inhibition for
at least one concentration were defined as “Active”, other-
wise defined as “Inactive”. All the compounds used in these
assay were downloaded in SDF format, processed and
named Rep_dataset (replicating), and NRep_dataset (non-
replicating) as described below in detail (Figure 1).

NRep_dataset
The confirmatory screening in this assay resulted in 1277
active and 1017 inactive compounds against non-replicating
M.tb. After removing the compounds containing salt/ions,
we got a final dataset of 2135 compounds, out of which
1206 were identified as inhibitors and 929 were non-
inhibitors.

Rep_dataset
This dataset involved screening of 2294 compounds
from the BioAssay-488890 and identified 1453 inhibitors
and 841 non-inhibitors for M.tb residing in replicating



Figure 1 Showing the flow diagram of datasets.

Singla et al. Chemistry Central Journal 2013, 7:49 Page 3 of 12
http://journal.chemistrycentral.com/content/7/1/49
phase. After removing the salt/ions containing com-
pounds, the final dataset was composed of total 2135
compounds of which 1355 compounds acted as replica-
tion mode inhibitor and rest were non-inhibitors.

SMART filters
The SMART pattern is the fragments present in com-
pounds with undesirable effect reported in past and
found to be responsible for toxicity or other side-
effects. Therefore, it is important to search these react-
ive, non-advisable functional groups in the compounds
with drug-like potential. In this study, we have used
SMART filter web application (http://pasilla.health.
unm.edu/tomcat/biocomp/smartsfilter) with Abbott
ALARM [22], Glaxo [23] and Pfizer LINT [24] SMART
filters. In this software, each compound was evaluated
for potential to pass each particular filter. A molecule
matching to this filter is classified into the failed category.
On this basis, it will identify the number of compounds
that pass or fail any of the implemented filters.

Substructure fragment analysis
In order to mine the hidden structural motifs present in
chemical compounds, in this study, we have used the
substructure pattern recognition method as described by
Shen et.al [25,26]. The dictionary of SubFP (substructure
fingerprints) containing 307 substructure (SMART) pat-
tern, which is freely available in PaDEL software was
used. These patterns were analyzed by substructure frag-
ment analysis [27]. The frequency of a fragment in the
inhibitors and non-inhibitors of M.tb for a particular
phase was calculated as follows.

Frequencyof a fragment ¼ Nfragment phase XNtotal
� �

Nfragment total X Nclass

� �

ð1Þ

where Nfragment_phase is the number of compounds
containing the fragment in a M.tb phase inhibitor. Ntotal

is the total number of compounds in that phase,
Nfragment_total is the total number of compounds containing
the fragment, and Nclass is the number of compounds in
the M.tb phase inhibitor.

Pharmacophore search
Since the pharmacophore represents the critical point
present in chemical structure and take part in protein
interaction, thus we have explored these features
present in our datasets. The pharmacophore features
were generated for the three first line (rifampicin, eth-
ambutol and streptomycin) and four second line (ethi-
onamide, cycloserine, kanamycin, amikacin) M.tb drugs
using pharmagist software [28]. These pharmacophores
(named pharmacophore-1, pharmacophore-2) were then
used to search similar compounds among the inhibitors of
Rep_dataset, and NRep_dataset.

Descriptor calculations
The PaDEL software has the capability of calculating 10
different types of fingerprints and 813 2D-3D descriptors
[29]. The binary fingerprints are easy to calculate,

http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter
http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter
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informative and interpretable, therefore we have used
these in our datasets (see Data source section). The bit-
string fingerprint is represented by 0’s or 1’s for the
absence or presence of a particular fragment. In this
study, we have used four different types of fingerprints.

Descriptor selection
It has been previously recognized that amongst the huge
number of descriptors, only a few are relevant for efficient
model building [30]. It is well known that the computation
time increases diagonally with addition of parameters.
Furthermore, some descriptors that increases the noise
level tremendously affect the model quality. Therefore, se-
lection of highly relevant descriptors is a crucial step to re-
duce the noise level and to build a robust classification
model. Therefore, we adopted multilayer techniques by 1)
removing highly correlated descriptors (> = 0.8 to > =0.4),
2) MCC based selection of descriptors, 3) frequency based
selection. For example, initially calculated 881 PubChem
fingerprints calculating using PaDEL software were re-
duced to 597 after removing useless fingerprints, then to
247 by removing highly correlated descriptors at correl-
ation cutoff 0.6.

Classification models
SVM based classification models
We have used support vector machine (SVM) for dis-
crimination between inhibitors and non-inhibitors of
drug tolerant M.tb for both replicative and non-
replicating phases. SVM can handle complex structural
features based on the statistical and optimizations the-
ory. In optimization process, the most important param-
eter is kernel function and is represented by t that varies
from 0, 1, 2 corresponds to linear, polynomial, and radial
basis function (RBF). The purpose of kernel function is
to build a hyperplane that could separate two classes of
data more accurately. For RBF kernel, the other param-
eter values are g, c, and j where c is used to trade-off be-
tween training error and margin, j is used to assign the
cost, important in imbalance dataset and g is the gamma
factor. In this study, we used SVMlight software package,
which is freely available and can be downloaded from
http://www.cs.cornell.edu/People/tj/svm_light/. The per-
formance of models was optimized using a systematic
variation of these different SVM parameters and kernels.

Evaluation of performance
To evaluate the performance of the prediction model,
we adopted a five-fold cross validation approach. In this
approach, the whole data was divided into five sets. Four
sets were used in training and remaining 5th set was
used for testing. This process was repeated five times
such that each set comes in test set one time. If a par-
ticular compound was active and the prediction also
envisage the same, then this was classified as true posi-
tive (TP); if actual was active and prediction was in-
active, then it was false negative (FN); if actual was
inactive and prediction was active, then its false positive
(FP); and if actual is inactive and prediction is also in-
active, then it’s true negative (TN) [26]. Once the model
was constructed fitness of the model was assessed using
the commonly used statistical parameters [26]. We have
also created receiver operating curve (ROC) to evaluate
the performance of models using threshold independent
parameters. ROC plots with area under the curve were
created using ROCR package in R.

Results
This study is based on high-throughput screening data
from PubChem BioAssay for identifying potential inhibi-
tors against drug tolerant M.tb H37Rv (replicative phase
and non-replicative phase).

Analysis of inhibitors and non-inhibitors
We calculated the descriptors of both Rep_dataset and
NRep_dataset (see Methods section) using the Marvin
plugin (ChemAxon, Budapest, Hungary (http://www.
chemaxon.com). We observed that the mean value of
molecular weight, Atom count and number of rotatable
bonds (RBN) was significantly higher (p < 0.05) in inhib-
itors of replicating phase as compared to non-inhibitors
whereas the lower mean value of these descriptors was
observed in case of inhibitors of non-replicating phase
as compared to non-inhibitors (Table 1). We compared
inhibitors of both replicating and non-replicating phase,
and observed that molecular weight, hydrogen bond ac-
ceptor, atom count, polar surface area, and rotatable
bond count is significantly lower (p < 0.05) in the com-
pounds inhibiting replication phase of M.tb. Further-
more, we analyzed these important properties to identify
any correlation between these descriptors and activity
and derived new rules for identifying inhibitors of myco-
bacterial growth (see detail in Additional file 1). Our
analysis suggested that the percentage of inhibitors against
mycobacterial growth (replicative phase) were more as
compared to percentage of non-inhibitors when the mo-
lecular weight is >300 Da. This means probability of being
inhibitors in this range is higher as compared to non-
inhibitors (see Additional file 1: Figure S1). Likewise, the
percentage of active compounds were more in comparison
to percentage of inactive when the hydrogen bond ac-
ceptor is >5 and rotatable bond count >6 (see Additional
file 1: Figure S3, Additional file 1: Figure S5). Similarly,
when polar surface area was <88 Å, percentage of decoys
were more as compared to percentage of active molecules
implies that the compounds with polar surface area >88 Å
were preferred for inhibitors (see Additional file 1: Figure S4).
However, for designing inhibitors against non-replicative

http://www.cs.cornell.edu/People/tj/svm_light/
http://www.chemaxon.com/
http://www.chemaxon.com/


Table 1 Mean (SD) of molecular descriptors from the M.tb datasets, compared actives and inactives

Descriptor Rep_dataset NRep_dataset Rep_dataset vs. NRep_dataset

Inha NIb Inha NIb Inha Inha

Molecular weight 325.73 (55.07)# 312.37 (57.71)# 317.32 (53.42)# 325.44 (59.78)# 317.32 (53.42)# 325.73 (55.07)#

logP 2.96 (0.95)# 2.82 (0.99)# 2.92 (0.93) 2.90 (1.02) 2.92 (0.93) 2.96 (0.95)

HBA* 3.93 (1.35)# 3.39 (1.29)# 3.76 (1.36) 3.70 (1.34) 3.76 (1.36)# 3.93 (1.35)#

HBD** 0.97 (0.76) 1.00 (0.76) 1.00 (0.76) 0.97 (0.77) 1.00 (0.76) 0.97 (0.76)

Atom count 38.31 (8.38) 37.60 (8.30) 37.19 (7.62)# 39.16 (9.11)# 37.19 (7.62)# 38.31 (8.38)#

PSA! 74.81 (27.63)# 64.46 (23.32)# 72.29 (27.17)# 69.38 (25.77)# 72.29 (27.17)# 74.81 (27.63)#

RBN!! 4.58 (2.04)# 4.40 (1.95)# 4.35 (1.91)# 4.73 (2.12)# 4.35 (1.91)# 4.58 (2.04)#

aInh: correspond to inhibitors, bNI: correspond to non-inhibitors, *HBA: hydrogen bond acceptor, **HBD: hydrogen bond donor, !PSA: polar surface area, !!RBN:
denotes rotatable bond number, #p < 0.05.
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mycobacteria, percentage of active is more as compared
to percentage of inactive when the molecular wt. of com-
pounds is <380 Da (see Additional file 1: Figure S6). This
means that molecules with molecular weight less than 380
Da were preferred in inhibitors as compared to non-
inhibitors. Similarly percentage of inhibitors was less as
compared to percentage of non-inhibitors when rotatable
bond was <2 and >4 (see Additional file 1: Figure S8).
Based on these rules, we also tried to understand the

behaviour of new class of anti-tuberculosis molecules
and found that out of 7 replication mode inhibitors
(PA-824, OPC-67683, TMC207, SQ109, Thioridazine,
Lineziod, PNU-100480), on an average 3 (42.8%) mole-
cules satisfied these rules. Similarly out of 4 inhibitors
(PA-824, Thioridazine, Linezolid, Motifloxin), an average
2 (50%) compounds followed these rules. In order to fur-
ther support these rules, we also analyzed 81 inhibitors
(out of 177 because rest were complex form) of tubercu-
losis studied by Ballell et. al., [31] and observed that
77.77% compounds fulfill the condition of molecular
weight, 56.79% followed logP criteria, and 27.16% agreed
with condition of rotatable bond count. There were only
19.75% active compounds which does not satisfy any of
these rules while rest 80.25% were following one or
more rules (Additional file 2: Table S1).

Validation of dataset
In 2011, Ekins et. al. used different datasets such as
Novartis, MLSMR, TAACF-NIAID CB2 in their study [9].
The Novartis dataset is composed of total 283 compounds
out of which 42 were aerobic and 241 were anaerobic in-
hibitors of M.tb The MLSMR and TAACF-NIAID CB2
dataset consist of 4096 and 1702 compounds responsible
for inhibiting M.tb more than 90% at 10 μm concentra-
tion. We were interested to know the similarity of our
dataset with Ekins et.al datasets [9]. Therefore, we com-
puted simple molecular properties and compared in terms
of the mean value and standard deviation (SD) of the de-
scriptor (Figure 2). The mean value of molecular weight,
logP, hydrogen bond acceptor, hydrogen bond donor, and
atom count is more closely related to Novartis aerobic
dataset (Figure 2A-2E). However, the polar surface area,
and rotatable bond count was near to Novartis anaerobic
and MLSMR dataset (Figure 2F-2G). This means that our
datasets have similar properties and are not very different
from previous datasets.

SMART filtering of the datasets
Previously, six different database namely US Antibiotic
drugs from Microsource database consist of 163 com-
pounds, US FDA drugs from Microsource contains 1041
drugs, FDA drugs from Jons Hopkins comprises of 2693
drugs, Natural Product from Microsource consist of 800
compounds, Novartis dataset consist of 283 compounds,
and 13 TB drugs were used for SMART based filtering
[8,9,19]. We also examined our datasets for the presence
or absence of different types of filters, which were used
in these datasets. It was observed that 78.6%, 16.3% and
44.1% compounds failed the Abbott ALARM, GSK, and
Pfizer LINT filter respectively (Table 2). The SMART fil-
tering of our dataset is consistent with other datasets
such as TB drugs, Novartis US antimicrobial drugs etc.
(Table 2). As observed from the Table 2, the Abbott
ALARM filter has high rate of failure as compared to
GSK and Pfizer LINT filters in all the different datasets.

Substructure fragment analysis
To further explore the structural features responsible for
killing the M.tb, substructure fragment analysis [25-27]
was performed on both (Rep_dataset anf NRep_dataset)
datasets using Substructure fingerprint (SubFP). The rep-
resentative fragments characterizing the inhibitors and
non-inhibitors are shown in Table 3. As shown in Table 3,
pattern of hetero_O, ketone, secondary_mixed_amine,
vinylogous_halide, and vinylogous_carbonyl or carboxyl_
derivatives present in higher frequency in NRep_dataset
inhibitors as compared to non-inhibitors, whereas no
significant difference is present in case of Rep_dataset.



Figure 2 Mean molecular descriptor property values depicted in the form of column and standard deviation (SD) in the form of error
bar for Rep (Rep_dataset), and NRep (NRep_dataset) inhibitors compared with Nov (Novartis), Nov_Aer (Novartis Anaerobic), Nov_Ana
(Novartis Anaerobic), MLSMR and TAACF-NIAID CB2 dataset hits.
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Similarly, pattern of hetero_N_nonbasic, heterocyclic,
carboxylic_ester, hetero_N basic_no_H occur more fre-
quently in Rep_dataset inhibitors while these substruc-
tures are more or less similar in case of NRep_dataset.
As shown in Table 3, the substructure patterns like ni-

tro, alkyne, enamine were presented more frequently in
case of inhibitors of both the Rep_dataset and NRep_
dataset as compared to non-inhibitors. However, the pat-
terns like amine, tertiary_carbon, alkylarylthioether and
Table 2 SMART filtering number of failures (%) using SMART

Filters Rep_dataset NRep_dataset Novartis (283) TB d

GSK (%) 197 (14.5) 196 (16.3) 20 (7.1)

Pfizer LINT (%) 609 (44.9) 532 (44.1) 135 (47.7)

Abbott ALARM (%) 1064 (78.5) 948 (78.6) 243 (85.9)
*US Antibiotic drugs from Microsource, **Microsource US FDA drugs, #Jons Hopkins
secondary_carbon are not preferred in any class of the
inhibitors.

Pharmacophore searching
We have generated two pharmacophores using three first
line and four second line M.tb drugs, (see Methods section)
and then scanned these pharmacophores in our datasets.
As shown in Figure 3, the screening of NRep_dataset
filter website

rugs (13) US Antibiotic* US FDA** JH FDA# Natural Product##

1 (7.7) 57 (35) 143 (13.7) 401 (14.9) 125 (15.6)

6 (46.1) 93 (57.0) 516 (49.6) 1264 (46.9) 304 (38.0)

7 (53.8) 144 (88.3) 688 (66.1) 1442 (53.5) 521 (65.1)

–All FDA drugs, ##Natural Product from Microsource.



Table 3 Frequency of 20 representative substructure fragments in the Rep_dataset and NRep_dataset

Fragment
number

Fragment/substructure name Rep_dataset NRep_dataset

FI
# FnonI

## FI
# FnonI

##

SubFP181 Hetero_N_nonbasic 1.15 0.74 1.03 0.96

SubFP275 Heterocyclic 1.03 0.94 1.00 1.00

SubFP85 Carboxylic_ester 1.14 0.76 0.97 1.03

SubFP180 Hetero_N_basic_no_H 1.18 0.68 0.95 1.07

SubFP182 Hetero_O 1.04 0.92 1.10 0.87

SubFP49 Ketone 0.97 1.06 1.13 0.83

SubFP32 Secondary_mixed_amine 1.00 1.01 1.28 0.64

SubFP135 Vinylogous_carbonyl or carboxyl_derivative 1.02 0.97 1.09 0.88

SubFP139 Vinylogous_halide 1.00 1.00 1.16 0.79

SubFP214 Sulfonic_derivative 0.95 1.09 0.68 1.41

SubFP143 Carbonic_acid_derivatives 0.95 1.08 0.80 1.27

SubFP65 NOS_methylen_ester_and_similar 0.41 2.03 1.38 0.51

SubFP23 Amine 0.92 1.14 0.70 1.39

SubFP3 Tertiary_carbon 0.80 1.35 0.90 1.13

SubFP20 Alkylarylthioether 0.69 1.55 0.79 1.27

SubFP103 Alkyl_imide 0.30 2.22 0.43 1.74

SubFP2 Secondary_carbon 0.88 1.21 0.93 1.09

SubFP188 Nitro 1.23 0.60 1.14 0.82

SubFP6 Alkyne 1.08 0.86 1.66 0.14

SubFP76 Enamine 1.13 0.78 1.39 0.49
#FI: Frequency of a fragment in inhibitor, ##FnonI: Frequency of fragment in non-inhibitor, *bold values shows the significance of substructure in the dataset.
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inhibitors resulted in total 735 (60.9%) and 579 (48%)
compounds for pharmacophore-1 and pharmacophore-2
respectively (Figure 3, Additional file 3: Table S2). Simi-
larly, screening of Rep_dataset for active compounds
resulted in total 846 (62.4%), and 704 (58.3%) compounds
for pharmacophore-1 and pharmacophore-2 respectively
(Additional file 4: Table S3).

Classification models
The PaDEL software used in this study calculates 881
PubChem, 166 MACCS, 79 EState, 307 SubStructure fin-
gerprints and each corresponds to a specific substructure
fragment. In this study, we have developed computational
models on both the datasets using these fingerprints as
described below.

Model based on NRep_dataset
Model based on binary fingerprints
The first SVM based model that was developed using 881
PubChem fingerprints showed 65.09%, 62.33%, 63.89%
sensitivity, specificity and accuracy with MCC value of
0.27 (Table 4). Likewise, based on MACCS keys, we
achieved best MCC value 0.15 using 43 fingerprints. As
shown in Table 4, the performance of models developed
using other fingerprints like MACCS, EState, and SubFP
was poor with MCC values less than 0.2. Afterwards, we
removed all fingerprints which have correlation > =0.8
to > =0.3 for all four classes and observed that the predic-
tion accuracy is more or less similar up to correlation cut-
off value 0.6 (Table 4, Additional file 5: Table S4). In case
of PubChem, our model showed 62.60%, 63.40%, 62.95%
sensitivity, specificity and accuracy respectively with MCC
value 0.26 at correlation cutoff 0.5. Similarly as shown in
Additional file 5: Table S4, MACCS based 34 keys shows
an accuracy value 55.93% with MCC value 0.12. In case
of Estate based fingerprints, numbers of descriptors
remained same from 0.6 to 0.4 cutoff, therefore no change
in performance has been observed. In order to improve
the performance, we developed a hybrid model using all
reduced fingerprints at a correlation cutoff value > =0.6
obtained from each class and achieved MCC value 0.28
slightly better than model developed on individual class.
However, using criteria of > =0.5, and > =0.4, the prediction
accuracy decrease ~1% to 2% (Additional file 5: Table S4).

Model based on features selected using MCC and frequency
based algorithms
A numbers of techniques are available for descriptors se-
lection such as correlation based, genetic algorithm
based, random forest based etc. In this study, we have
used two feature selection techniques namely MCCA
and frequency based for selecting highly informative
fingerprints. In case of MCCA, the MCC value of each
fingerprint was calculated and then used in arranging



Figure 3 Showing the results of pharmacophore based screening of both the datasets. A) Represents Pharmacophore-1 properties in
inhibitors of Rep_dataset; B) Showing the Pharmacophore-2 properties in inhibitors of Rep_dataset; C) Showing the Pharmacophore-1 properties
in NRep_dataset inhibitors; D) Represents the Pharmacophore-2 properties in NRep_dataset inhibitors.
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the fingerprints in term of increasing value of MCC,
from this top 10, 15, and 20 fingerprints were selected.
In case of frequency based algorithm, frequency of each
fingerprint present in inhibitors and non-inhibitors
was calculated as described in equation-1. Afterwards,
top 10, 15, 20 features were selected on the basis of fre-
quency difference in inhibitors vs. non-inhibitors (for
each fingerprints) (Additional file 6: Table S5). From
these selected features, we observed that there is not
much improvement in the performance of models with
different number of features (data not shown). The max-
imum MCC achieved on MCCA based method on top
15 is 0.18 while on top 15 frequency based method is
0.10 (Table 5). Furthermore, development of hybrid
model using selected descriptors from both methods
resulted in slight increase in performance for each type
of fingerprints. As shown in Table 5, a hybrid model de-
veloped using selected fingerprints by MCCA based
method on all four classes shows accuracy 60.84% with
MCC value 0.22 and AUC value 0.65.
Table 4 Results of different binary fingerprints for NRep_data

Fingerprint Descriptor numbers Sensitivity

PubChem 881 65.09

PubChem (0.6) 247 62.44

MACCS 166 56.63

MACCS (0.6) 36 53.07

EState 79 61.77

EState (0.6) 33 62.69

SubFP 307 59.12

SubFP (0.6) 96 57.63

Hybrid (0.6) 412 65.67
Model based on Rep_dataset
Model based on binary fingerprints
In this case, the 166 MACCSFP performed best with
sensitivity/specificity 72.47%/73.97%, accuracy 73.02%
with MCC value of 0.45 (Table 6). The prediction accur-
acy of PubChem based fingerprint was nearly equal to
MACCFP with MCC value of 0.44 (Figure 4). However,
the EState and SubFP was found to perform poor with
MCC values of 0.34 and 0.35 respectively (Table 6,
Figure 4). As shown in Additional file 5: Table S4, using
MACCS fingerprints at 0.6 cutoff, our model showed an
accuracy value 73.02% while a decrease had been ob-
served at correlation cutoff value 0.5. However, in case
of Estate, and SupFP, the numbers of descriptors were
more or less constant, therefore no significant incre-
ment or decrement in performance was observed. From
these results, we concluded that reduction of finger-
prints at correlation cutoff value 0.6 is sufficient for
attribute selection (Table 6, Additional file 5: Table S4).
As shown in Table 6, the hybrid model has increased
set calculated from PaDEL software

Specificity Accuracy MCC AUC

62.33 63.89 0.27 0.67

63.51 62.90 0.26 0.68

59.20 57.75 0.16 0.60

58.99 55.64 0.12 0.57

55.01 58.83 0.17 0.60

55.11 59.39 0.18 0.61

60.60 59.77 0.20 0.63

61.79 59.44 0.19 0.63

62.00 64.07 0.28 0.69



Table 5 Results of different binary fingerprints for NRep_dataset on selected 15 descriptors calculated from PaDEL
software

Fingerprint MCC-based descriptors Frequency based descriptors Hybrid (MCC + Frequency)

Sen.a Spec.b Acc.# MCC! AUC!! Sen.a Spec.b Acc.# MCC! AUC!! Sen.a Spec.b Acc.# MCC! AUC!!

PubChem 59.37 58.45 58.97 0.18 0.67 60.03 41.01 51.76 0.01 0.51 59.62 58.45 59.11 0.18 0.62

MACCS 59.95 50.91 56.02 0.11 0.56 56.80 52.85 55.08 0.10 0.57 61.86 53.39 58.17 0.15 0.59

EState 56.97 55.76 56.44 0.13 0.59 55.80 54.47 55.22 0.10 0.58 59.54 53.07 56.72 0.13 0.59

SubFP 51.99 59.96 55.46 0.12 0.59 59.54 41.55 51.71 0.01 0.51 52.99 57.37 54.89 0.10 0.57

Hybrid-4 59.45 62.65 60.84 0.22 0.65 61.28 57.05 59.44 0.18 0.60 N.A N.A N.A N.A N.A
aSen.: Sensitivity, bSpec.:Specificity, #Acc.:Accuracy, !MCC: Matthews correlation coefficient, !!AUC: Area Under Curve.
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the sensitivity ~3% to 4% but the prediction accuracy
was nearly same as that of MACCS fingerprints based
classification model.

Model based on features selected using MCC and frequency
based algorithms
The above described technique was also applied for se-
lection of descriptors. As shown in Table 7, the classifi-
cation model on MCC based selected fingerprints shows
sensitivity ranges 53% to 67%, specificity 56% to 64%
and MCC value 0.16 to 0.28. The hybrid model of MCC
dependent fingerprints encapsulated the features of all
four classes show significant improvement in MCC value
from 0.28 to 0.35 (Table 7). However, the frequency-
based model performed poor in this dataset as well
(Additional file 7: Table S6). In frequency based selected
fingerprints, estate fingerprints shows sensitivity of
64.13%, specificity of 58.59%, accuracy of 62.11% with
AUC value of 0.64. The four-hybrid model (for each
class) developed using selected fingerprints from both
the MCC and frequency based methods also resulted in
slight improvement in performance.

Discussion
In contrast to the general antibacterial rules or models,
there is no report for phase specific rules and very lim-
ited efforts have been made to derive such ‘rules’ for tu-
berculosis [32-35]. Therefore, in the present study, we
tried to generate new phase specific rules for better
Table 6 Results of different binary fingerprints for Rep_datas

Fingerprint Descriptor numbers Sensitivity

PubChem 881 75.79

PubChem (0.6) 247 73.06

MACCS 166 72.47

MACCS (0.6) 91 73.36

EState 79 70.92

EState (0.6) 33 70.77

SubFP 307 70.63

SubFP (0.6) 96 66.49

Hybrid-4 (0.6) 467 75.72
inhibitor predictions and drug development against M.
tb. Our analysis suggested that simple molecular proper-
ties of chemical compounds like molecular weight, logP,
polar surface area etc. were playing an important role in
crossing the mycobacterium cell wall and its killing.
Based on this study, we propose that some properties
like molecular weight of compounds >300 Da for repli-
cation inhibitors and <380 Da for compounds inhibiting
tuberculosis growth in non-replication mode. Based on
this study, we derived some rules for identifying inhibi-
tors against M.tb (for details see Results section). We have
also shown that some substructure patterns like nitro, al-
kyne, enamine were dominating in inhibitor class of both
phases. Similarly, the substructure like amine, tertiary_car-
bon, alkylarylthioether, secondary_carbon were not pre-
ferred in any of the growth phase inhibitors. This study
demonstrated that molecules targeting the replicative and
non-replicative phases have different chemical and mo-
lecular properties. These variations could arise from dif-
ferences in the cellular metabolism and composition of
cell wall of M.tb in these two phases of pathogenic cycles.
We also observed that out of 7 drugs on an average 3 sat-
isfied these criteria for replication inhibitors and out of 4
drugs known to be active in latent phase, ~2 also satisfied
these rules implying the applicability of these modified
rules for identifying anti-tuberculosis molecules. However
this observation also suggests that there is an urgent re-
quirement to increase the dataset of antitubercular drugs
to further improve these rules. As suggested previously,
et calculated from PaDEL software

Specificity Accuracy MCC AUC

68.97 73.30 0.44 0.78

72.18 72.74 0.44 0.80

73.97 73.02 0.45 0.80

72.44 73.02 0.44 0.79

63.59 68.24 0.34 0.72

64.10 68.34 0.34 0.72

65.64 68.81 0.35 0.73

68.33 67.17 0.34 0.72

68.87 73.58 0.45 0.78



Figure 4 ROC plots of four class of fingerprints.
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identification of the undesirable fragment is important in
early stages of drug discovery to reduce the time and cost
involved in optimization process [36]. Our SMART filter-
ing results are similar to that of previous studies. The sub-
structure patterns, identified in this work will be helpful
for TB research community to design most potent inhibi-
tory molecules against M.tb.
Additionally, four types of binary fingerprints were used

to develop classification models using SVM based ma-
chine learning approach. We observed that the reduction
of descriptors even at > =0.6 correlation cutoff, is sufficient
to develop a robust classification model. As reported in
different studies, we also observed that descriptors selec-
tion was playing an important role in efficient model
building [17,18]. In the present work, we have introduced
a new algorithm named MCCA (Matthews Correlation
Coefficient Algorithm) for selection of informative de-
scriptors/fingerprints.
In past, different studies have been done to predict M.tb

inhibitors. The Bayesian based classification model devel-
oped by Ekins et. al. has good predictive power value >0.7
Table 7 Results of different binary fingerprints for Rep_datas
software

Fingerprint MCC-based descriptors Frequenc

Sen.a Spec.b Acc.# MCC! AUC!! Sen.a Spec.b

PubChem 59.85 56.92 58.78 0.16 0.61 60.00 41.15

MACCS 53.95 58.85 55.74 0.12 0.58 54.39 53.72

EState 67.31 59.74 64.54 0.26 0.66 64.13 58.59

SubFP 64.43 64.10 64.31 0.28 0.65 59.70 44.62

Hybrid-4 72.55 62.82 68.99 0.35 0.73 66.13 59.10
aSen.: Sensitivity, bSpec.:Specificity, #Acc.:Accuracy, !MCC: Matthews correlation coeffi
(in-term of AUC) on independent dataset [9]. In 2011, an-
other Bayesian based model was developed to differentiate
inhibitors under aerobic vs anaerobic condition [8]. But
the major limitation of previous studies was that these
were not able to predict the replication/non-replication
phase specific inhibitors of M.tb based on carbon starva-
tion model. In 2010, A report by Gengenbacher et. al
showed that the behaviour of drugs like steptomycin, ri-
fampicin, isoniazid etc. was entirely different in replica-
tion, hypoxia induced drug tolerant and nutrient depleted
models [37]. Secondly, these models were based on the
use of commercial softwares, hence limiting their accessi-
bility. Similarly, in 2011, Periwal et. al. developed model
on three dataset with maximum MCC value of 0.52. In
2012, a computational model was developed using large
datasets obtained from high throughput screening based
on whole cell screening using microdilution alamar blue
assay and achieved maximum AUC value of 0.748 [38].
Although, Periwal et. al. used the free softwares for model
development but the non-availability of free software/
webserver of these study restrict the use of their model by
the scientific community. Considering these observations,
we have developed a computational model that could dis-
criminate the active compounds from inactive ones in
both phases. Based on this study, we have also developed
a user friendly, freely available webserver to search for
new active molecules. We anticipate that these findings
will provide insight that could be used in future to identify
novel inhibitors effective against M.tb in either replicative
or non-replicative phase.
In summary, we have identified some important sub-

structures that are present in M.tb inhibitors. The
SMART based filtering had identified 164 compounds
from replicative inhibitors dataset and 180 compounds
from non-replicative inhibitors dataset that passed all
these three filters (see Results section) would be useful in
future to reduce the effect of poor ADMET properties.
These compounds would be useful in future for virtual
screening and designing new inhibitors against M.tb. This
study is implemented in the form of open source
webserver to assist scientific researcher, and to boost up
the drug discovery process against M.tb.
et on selected 15 descriptors calculated from PaDEL

y based descriptors Hybrid (MCC + Frequency)

Acc.# MCC! AUC!! Sen.a Spec.b Acc.# MCC! AUC!!

53.11 0.01 0.51 58.60 57.44 58.17 0.15 0.61

54.15 0.08 0.54 64.35 61.15 63.19 0.25 0.66

62.11 0.22 0.64 66.86 58.85 63.93 0.25 0.65

54.19 0.04 0.53 66.20 63.33 65.15 0.29 0.66

63.56 0.25 0.67 N.A N.A N.A N.A N.A

cient, !!AUC: Area Under Curve.
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Web service to community
One of the main reasons of slow progress in Computer
Aided Drug Designing (CADD) is the lack of freely avail-
able softwares and its implementation in user-friendly
webservers. Most of these studies were focused on com-
mercial softwares and hence their implementation is diffi-
cult. Our major emphasis is to help scientific community
by developing freely accessible webserver/softwares based
on our study. Thus, we have used both commercial as well
as open source softwares in this study. Based on that, we
have developed a webserver using SVM based classifica-
tion model. Additionally, we have implemented the
pharmagist software for identifying pharmacophore fea-
tures similar to the first line and second line anti-
mycobacterial drugs. Server has been developed under
Linux environment using CGI-Perl scripts. In this web
server, there are three options for molecule submission, 1)
Draw structure using JME editor (http://www.molinspira
tion.com/jme/), 2) By pasting molecule in mol/mol2 file
format, 3) By file upload. The results of prediction is pro-
vided in the tabular format with prediction class (inhibitor
or non-inhibitor) of both phase as well as pharmacophore
features similar to first line as well as second line M.tb
drugs present or absent.
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distribution of active and decoys molecules.

Additional file 2: Table S1. Simple molecular properties of M.tb
inhibitors and their rules based classification.
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Additional file 4: Table S3. Pharmacophore based screening score of
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Additional file 6: Table S5. Frequency based distribution of different
classes of fingerprints between active and inactive compounds of
NRep_dataset.
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