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Abstract 

Two new Cobalt(II) complexes 12 and 13 have been synthesized from 2‑[(E)‑(3‑acetyl‑4‑hydroxyphenyl)diazenyl]‑4‑(2‑
hydroxyphenyl)thiophene‑3‑carboxylic acid (11) as a novel ligand. These three new compounds were characterized 
on the basis of their powder X‑Ray Diffraction, UV–Vis, IR, NMR, elemental analysis and MS spectral data. DFT/
B3LYP mode of calculations were carried out to determine some theorical parameters of the molecular structure 
of the ligand. The purity of the azoic ligand and the metal complexes were ascertained by TLC and melting points. 
The analysis of the IR spectra of the polyfunctionalized azo compound 11 and its metal complexes 12 and 13, reveals 
that the coordination patterns of the ligand are hexadentate and tetradentate respectively. Based on the UV–Vis 
electronic spectral data and relevant literature reports, the ligand and derived complexes were assigned the E 
(trans) isomer form. Likewise, octahedral and square‑planar geometries were respectively assigned to the cobalt(II) 
complexes. The broth microdilution method was used for antibacterial assays through the determination of minimum 
inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The ligand 11 displayed moderate 
antibacterial activity (MIC = 32–128 μg/mL) against Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, 
Pseudomonas aeruginosa and Klebsiella pneumoniae 22. The octahedral cobalt(II) complex 12 showed moderate 
activity against Pseudomonas aeruginosa (MIC = 128 μg/mL) and Klebsiella pneumoniae 22 (MIC = 64 μg/mL) and none 
against Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922, whereas the square‑planar complex 13 
displayed moderate activity only on Klebsiella pneumoniae 22 (MIC = 64 μg/mL).
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Graphical abstract

Introduction
Antimicrobial resistance (AMR) appears over time as a 
phenomenon mainly linked to the genetic evolution of 
pathogens. The direct consequence of this AMR is that 
it makes infections more difficult to treat [1–3]. There is 

therefore a constant search for new antimicrobial com-
pounds from natural sources [4–7] or via synthetic routes 
[8–10] as possible solutions. Thus, among the broad 
range of bioactive molecules of synthetic origin, coordi-
nation compounds in general and those based on hybrid 

Scheme 1 Structures of some azo thiophenes compounds

Scheme 2 Structures of some industrial azo dyes
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heterocyclic ligands such as azo thiophenes scaffolds 
such as 1, 2 and 3 (Scheme 1) in particular [11, 12], rep-
resent the most promising molecules for the discovery of 
novel antimicrobial drugs [13, 14].

Such hybrid molecules are expected to combine the 
properties of the chelating heterocyclic ligands with 
those of the central metal ions and to exhibit much better 
biological profiles [15–18].

Azo compounds have a long history and are important 
part of our daily life. They are mainly used as dyes and 
pigments in various fields, such as: textile dyeing (mor-
dant yellow 10 (4) [19]); the food (tartrazine (5) [20]) and 
cosmetics (red 6 (6) [21]) industries (Scheme 2).

They also have many other applications in 
physicochemistry, analysis, catalysis [22, 23] and 
pharmacy [24] because of their special complexing 
abilities, sensitivity as chromogenic reagents, usage in 
spectrophotometry and ability to detect a variety of metal 
ions. In addition, they have been of major importance 
in drug development due to their antioxidant, anti-
inflammatory, fungicidal, antidiabetic, bacteriostatic, and 
antiseptic activities [25–27]. These compounds and their 
derivatives have some potential applications in different 
fields, including industrial and biological research [28, 
29]. For instance, in the dyeing of wool and synthetic 
polyamides, the azo complexes of Cr(III) and Co(III) 
are extensively utilized in industry [30], as well as the 
azo complexes of Ni(II) and Cu(II), which are utilized 
in biology as antibacterial and anticancer medications 
[31, 32]. Azo compounds having in their structures 
both the thiophenic and phenolic fragments (which 
separately have each amazing antiviral, antibacterial, 
antifungal, cytotoxic [33], antioxidant and antiradical 

[34] properties), are expected to combine the different 
properties of the latter in the hybrid structures [35].

Cobalt is the chemical element with atomic number 27, 
symbol Co and electronic structure  [Ar]4s23d7 belonging 
to block “d” of the periodic table of elements. It is 
relatively rare, gray in color, ductile, fragile and magnetic. 
Relatively unreactive, it does not oxidize in humid or 
dry air at normal environmental temperatures. The two 
valence states, cobaltous(II) and cobaltic(III), melt at 
1493 °C with limited water solubility. These properties are 
similar to those of iron and nickel, which are neighbors 
in the periodic table [36]. It is one of the most important 
transition metals from a biological point of view. Its 
ions act in the activation of cholinesterase and provide 
protection against excessive oxygen pressure in the lungs 
during respiration. They also act as bacteriostatic agents 
comparable with antibiotics [37]. The cobalt ion is an 
integral part of the vitamin B12 molecule [38] which 
has a key role in the maturation of red blood cells, the 
chemical name of this vitamin, cobalamin, also evokes 
the importance of the cobalt which is present in it at 4% 
[39, 40]. Cobalt complexes have also been suggested to 
possess antirheumatic, antihistamine [41, 42] antifungals 
and antivirals properties [43]. Cobalt coordination 
compounds are the earliest known metal complexes and 
coordination chemistry was founded with the study of 
these promising compounds [44].

As part of a continuing interest in the chemistry and 
biological properties of azo compounds having in their 
structures thiophenic and phenolic fragments, we have 
undertaken in this study to determine how they coordi-
nate with cobalt(II) in order to evaluate the antimicrobial 
activities of the synthesized product and those of their 

Scheme 3 Reaction sequences for the preparation of compound 11 
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cobalt(II) complexes as well, on certain resistant bacterial 
strains.

Results and discussion
Chemistry
The new azoic ligand 11 was prepared using the thien-
ocoumarin 7 as starting material. Procedure for the 

preparation of 7 has been reported earlier [45, 46]. 
The general preparation process of 11 is displayed in 
Scheme 3 [46, 47].

The structure of substrate ligand 11  (C19H14N2O5S) 
was confirmed with its physical and spectroscopic data. 
Reaction of compound 11 (previously dissolved in 4 mL 
of DMSO) with Co(C2O4)‧2H2O (dissolves in EtOH/
MeOH 2:1) with constant stirring at room temperature 
for 48 h gave compounds 12 and 13 (Scheme 4).

The ligand and the complexes were obtained as dark 
green, black and green powders respectively, air stable 
and soluble in DMSO and acetone. The elemental 
analysis (C, H, N, and S) and melting points data of these 
compounds are recorded in Table 1.

The UV–VIS spectrum of ligand 11 showed a strong 
band in the ultraviolet range at 332  nm and moderate 
bands above 350 nm, attributed to the π → π* and n → π* 
transitions (due to the azo bridge), respectively (Fig.  1). 
The maximum absorption peak of azo compounds in 
general is around 330  nm in the UV–visible absorption 
spectrum due to the π → π* electronic transition of trans 
isomers [48]. In the context of this study, these absorption 
maxima observed in the ultraviolet region of the UV–Vis 
spectra of ligand 11 and of the synthesized complexes, 12 
and 13, are found at 332 nm, close to that reported in the 

Scheme 4 Reaction sequences to the complexes 12 and 13  ([Co2(C19H12N2O5S)2])

Table 1 Analytical and physical data for the ligand and complexes

Compounds Colors mp (∘C) Calculated (found)

%C %H %N %S

11 Dark green 296–298 59.68 (59.70) 3.69 (3.68) 7.33 (7.31) 8.38 (8.37)

12 Black 288–290 51.95 (51.98) 2.75 (2.78) 6.38 (6.36) 7.30 (7.27)

13 Green 214–216 51.95 (51.92) 2.75 (2.77) 6.38 (6.41) 7.30 (7.33)
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Fig. 1 Electronic spectra of ligand 11 (black) and cobalt(II) complexes 
12 (blue) and 13 (green)
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literature. Furthermore, the electronic spectral data were 
very useful for the assignments of the stereochemistry of 
the metal complexes based on the positions and number 
of d → d transition peaks.

For the cobalt (II) complexes, the only possible 
configurations found in the literature are square-plane, 
tetrahedral and octahedral. Therefore, for complex of 
cobalt(II) hexadentate 12, the only possible geometry 
that could be envisaged is octahedral. In fact, its 
electronic spectrum shows two bands of low intensities 
in the visible range. The first at 490  nm is attributed to 
the 4T1g(F) → 4A2g(F) transition and the second around 
600  nm is due to the 4T1g(F) → 4T1g(P) transition [49]. 
These 2 absorptions are characteristic of an octahedral 
environment around the cobalt(II) ion complexes [50].

For the tetradentate complex 13, a square-planar or 
tetrahedral configuration could be envisaged. Based on 
its electronic spectrum, it was possible to differentiate 
between these two alternative configurations as follows. 
The absence of absorptions between 600 and 700  nm 
which are characteristic for tetrahedral cobalt(II) 
complexes [51, 52], ruled out the hypothesis of a 
tetrahedral geometry for 13. Moreover, the presence 
of an absorption (of very low intensity) above 500  nm 
(Fig.  1) makes more plausible the hypothesis of a low-
spin square-planar geometry for this complex [53, 54]. 
As a consequence, on the basis of the LCAO approach, 
the central Co(II) ions should be hybridized  sp3d2 and 
 dsp2 respectively to comply with the octahedral and 
square-planar geometries of the coordination spheres 
in compounds 12 and 13 respectively. The absorption 
spectra of the ligand and complexes are represented in 
Fig. 1.

In the IR spectrum, the free ligand  C19H14N2O5S shows 
a very strong and sharp band with well-structured peaks 
at 1726 and 1668   cm−1 due to the ν(C=O) (ketone and 

Fig. 2 Infrared spectrum of compound 11 

Fig. 3 a Infrared spectrum of compound 12. b Superposed infrared 
spectra of compounds 11 (black) and 12 (blue)

Fig. 4 a Infrared spectrum of compound 13. b Superposed infrared 
spectra of compounds 11 (black) and 13 (green)
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acid respectively) present in the molecule (Fig.  2). In 
the IR spectra of the complexes  [Co2(C19H12N2O5S)2] 
(Figs.  3a and 4a), these bands appear but with a pro-
nounced shift towards higher frequencies at 1748   cm−1 
and 1695   cm−1 respectively (for 13), and towards lower 
frequencies around 1713   cm−1 (for 12), indicating the 
involvement of the corresponding oxygen in the coor-
dination with the central  Co2+ ion. In these complexes, 
the values of ν(N=N) observed at 1446  cm−1 in the ligand 
remain constant, meaning that the azo function does not 
participate in the coordination. The other atoms involved 
in the coordination bonds in these molecules are the oxy-
gen atoms of the two phenolic hydroxyl groups and that 
of the carboxylic acid function present in ligand 11. The 
absence of the ν(OH) frequencies in the IR spectrum of 
the complex 13, observed at 3541   cm−1 and 3248   cm−1 
(Fig.  4b) in the starting ligand and assigned to free (2’-
OH) and chelated (4’’-OH) phenolic hydroxyls respec-
tively, suggests the participation of the corresponding OH 
groups in the coordination with deprotonation (Fig. 4a). 
In the IR spectrum of the complex 12, the signal of the 
hydroxyl (2’-OH) appears in the higher frequency region 
at 3258  cm−1 and one can notice the disappearance of the 
signal of the carboxylic acid hydroxyl around 2575  cm−1. 
These observations are suggestive of the participation 
of the corresponding oxygen atoms in the coordination 
without and with deprotonation respectively. The new 
bands that appeared in the IR spectrum of the complex 
in the region 521–570   cm−1 at 548 and 528   cm−1 (com-
plex 12) and at 530  cm−1 (complex 13) were attributed to 
the Co–O bonds [55, 56] between the central cobalt ion 
and all the oxygen atoms involved in coordination. The 
relative intensities as well as the provisional assignments 
of the various bands mentioned above are given in the 
Table 2.

The suggested structures were supported by the mass 
spectral data of the free azo dye ligand and its Co(II) 
complexes, which were compatible with the molecular 
ion fragments (Fig.  5). Some of the fragments observed 
in the mass spectra of the ligand 11 and its Co(II) com-
plexes 12 and 13 are rationalized in the fragmentation 
Schemes 5, 6 and 7.

Comparative 1H NMR spectra of the ligand (Fig.  6a) 
and the complexes (Fig. 6b, c) clearly show that the ligand 

undergoes deprotonation with complexation. Indeed, in 
the spectra of complexes 12 (Fig.  6b) and 13 (Fig.  6c), 
the 2′-OH at 2.99  ppm in the ligand was not seen in 
Fig. 6b, whereas, the 2′-OH at 2.99 ppm and 4″-OH at 
11.93 ppm in the ligand were not seen in Fig. 6c. These 
observations confirm the formation of the Co–O bonds 
with the corresponding oxygen atoms. Moreover the 
same signals with almost the same multiplicities are 
observed in the spectra of the ligand and the complexes 
with respect to the aromatic protons.

The 13C NMR spectrum of the ligand 11  (C19H14N2O5S) 
(Fig. 7a) displays 19 signals due to the 19 carbon atoms 
present in this molecule. The most important being 
the carbon atoms bearing the coordinating oxygen 
atoms, found at 205.2  ppm, 184.8  ppm, 161.3  ppm and 
155.5 ppm for the carbons 3″–COCH3, 3–COOH, C-4″ 
and C-2′, respectively.

Thus, the comparison of this spectrum with those of 
the  [Co2(C19H12N2O5S)2] complexes 12 and 13 (Fig.  7b, 
c) made it possible to assign the carbonyls 3″-COCH3 
and 3-COOH the chemical shift values 195.0  ppm 
and 179.9  ppm, respectively, and the phenolic carbons 
C-4″ and C-2′ the values 156.5  ppm and 156.0  ppm, 
respectively in the complex 12 whereas the values 
192.4 ppm, 185.6 ppm, 161.4 ppm and 156.7 ppm could 
comparatively be assigned in the complex 13, respectively 
for the above-mentioned atoms. The chemical shifts of 
the ligand and the complexes are summarized in Table 3.

Figure 8 summarizes the two most significant interac-
tions that were seen in the HSQC spectra of the ligand 
and compounds 12 and 13. The first of these is the corre-
lation spots between the methyl protons at 2.63 ppm (in 
11) (one signal), and at 2.63 and 2.61  ppm (in 13) (two 
signals) and their carbons at 39.1  ppm and at 39.9 and 
39.8  ppm respectively. On the other hand, correlation 
spots between protons H-6’ at 8.87  ppm (in 12) and at 
8.83 ppm (in 13) and their carbons at 129.6 ppm (in 12) 
and at 129.9 ppm (in 13) indicate the presence of the ace-
tophenone fragment and that of the thiophenic moieties 
on each side of the N = N bridge.

The long-distance couplings (2  J and 3  J) between the 
protons and the carbons of the chelating ligand moie-
ties were highlighted by the HMBC experiment (Fig. 9). 
Indeed, it allowed to reconstruct the carbon skeleton of 

Table 2 Infrared spectral data for the ligand and complexes

Compounds Infrared spectral data  (cm−1)

ν (2′-OH) ν (4′-OH) ν (OH)acid ν (C=O)ketone ν (C=O)acid ν (N=N) ν (Co–O)

11 3541 3249 2575 1726 1668 1446 –

12 – 3258 – 1713 1713 1446 528/548

13 – – 2577 1748 1695 1450 530
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Fig. 5 a HRESI + mass spectrum of azo ligand 11. b HRESI + mass spectrum of complex 12. c HRESI + mass spectrum of complex 13 
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the coupling fragment through correlation spots between 
the 4″-OH proton (11.93  ppm) and the C-4″ carbons 
(161.3  ppm) and C-5″ (118.1  ppm), the proton H-6″ 
(around 7.85  ppm) and the carbons C-2″ (136.8  ppm) 
and C-4″ (161.3  ppm), the H-5″ proton (6.91  ppm) 
and the C-3″ carbons (120.0  ppm) and finally between 
the methyl  CH3 (2.60  ppm) and the carbonyl C=O 
(205.1 ppm), thus eliminating the hypothesis of multiple 
couplings on the aromatic ring of the coupler. Some of 

these correlations were also found in the HMBC spectra 
of the complexes despite their high complexity due to the 
overlapping of homologous proton systems of the chelat-
ing ligand moieties.

The COSY 1H-1H experiment of the ligand (Fig.  10) 
clearly showed the correlation squares between the aro-
matic protons belonging to the molecular fragments on 
either side of the azo bridge. For the complexes, the most 

Scheme 5 Suggested fragmentation pattern of azo ligand 11 

Scheme 6 Suggested fragmentation pattern of Co(II) complex 12 



Page 9 of 19Sopbué Fondjo et al. BMC Chemistry           (2024) 18:75  

visible correlations are those of the benzene ring for the 
above mentioned similar reasons (Fig. 11).

Theoretical calculations were performed on the ligand 
to determine the most reactive sites of the unsaturated 
system. The energies and electronic densities of the fron-
tier molecular orbitals (FMO), HOMO and LUMO, as 
well as the molecular electrostatic potential (MEP) are 
important electronic parameters for this purpose [57, 
58]. The structures of the FMO and the MEP obtained 
from a B3LYP/6-311G mode of calculations are given 
in Fig.  12. The  EHOMO and  ELUMO values are—6.114  eV 
and—2.960 eV respectively, resulting in an energy gap of 
3.15 eV.

XDR analysis
The powder X-ray diffraction of ligand 11 and complex 
13 are different from each other (Fig.  13) and indicates 
a good crystalline structure and a good purity of these 
compounds. The spectra of compound 13 shows a sig-
nificant number of sharp bands or peaks. This suggests 
that it is made up of well-organized particles. All the new 
peaks exhibited in the diffractogram of the complex 13 
are in agreement with the fact that it is different from the 

ligand 11. The optimized 3D view of compound 11, 12 
and 13 are clearly presented in Fig. 14.

Biology
Antibacterial activity
The comparative study of the activity of the starting 
2-aminothiophen (7) and the tree new compounds (11, 
12 and 13) was carried out on bacteria strains such as 
Staphylococcus aureus ATCC25923, Pseudomonas aer-
uginosa, Escherichia coli ATCC25922 and Klebsiella 
pneumoniae 22. Screening results showed that com-
pound 7 had a moderate activity (CMI = 128 µg/mL) and 
(CMI = 64  µg/mL) on Escherichia coli ATCC25922 and 
Klebsiella pneumoniae 22 respectively, but its highest 
activity (CMI = 32  µg/mL) was found on Pseudomonas 
aeruginosa and Staphylococcus aureus ATCC25923 
strains. These activities decrease in the azoic ligand 11 
on Pseudomonas aeruginosa (CMI = 64  µg/mL) and 
Staphylococcus aureus ATCC25923 (CMI = 128  µg/mL); 
increase on Escherichia coli ATCC25922 (CMI = 32  µg/
mL) and remains constant on Klebsiella pneumo-
niae 22 (CMI = 64  µg/mL). Complex 12 had no activ-
ity on two strains Staphylococcus aureus ATCC25923 
and Escherichia coli ATCC25922, but had a moderate 

Scheme 7 Suggested mass fragmentation pattern of Co(II) complex 13 
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Fig. 6 a 1H‑NMR spectrum of the ligand 11. b 1H‑NMR spectrum of the complex 12. c.1H‑NMR spectrum of the complex 13 
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Fig. 7 a 13C‑NMR spectrum of the ligand 11. b 13C‑NMR spectrum of the complex 12. c.13C‑NMR spectrum of the complex 13 
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activity (CMI = 128  µg/mL) and (CMI = 64  µg/mL) on 
Pseudomonas aeruginosa and Klebsiella pneumoniae 
22 respectively, while complex 13 had no activity on all 
strains except on Klebsiella pneumoniae 22 (CMI = 64 µg/
mL) where the activity remains constant with respect to 
precursor 7. All data are summarized in Table 4.

Cytotoxic activity
To investigate the potential use of compounds 7, 11, 
12 and 13, their cytotoxicity was evaluated. None of 
the tested samples showed hemolytic activities against 
red blood cells at concentrations up to 128  µg/mL 
(Table 5). However, at the highest concentration tested 
in this study (256  μg/mL), complexes caused less than 

Table 3 13C and 1H NMR (DMSO‑d6) data of the ligand 11 and those of the complexes 12 and 13 

Positions Ligand 11 Complex 12 Complex 13

δ 13
C in ppm δ 1H in ppm δ 13

C in ppm δ 1H in ppm δ 13
C in ppm δ 1H in ppm

2 154.5 – – – 155.4 –

3 154.2 – – – 154.9 –

3‑COOH 184.8 – 179.9 – 185.6 –

4 148,4 – 149.6 – 148.1 –

5 119.7 6.94 129.1 8.83 – 7.54

1′ 115.6 – 115.2 – 115.2 × 2 –

2′ 155.5 – 156.0 – 156.7 –

2′‑OH – 2.99 – – – –

3′ 117.7 7.46–7.49 117.0 7.41–7.47 117.2 × 2 7.34–7.42

4′ 136,0 7.74–7.85 135.3 7.73–7.81 135.7 7.71–7.80

5′ 126.0 7.46–7.49 125.3 7.41–7.47 125.7 × 2 7.34–7.42

6′ 129.5 8.69 129.6 8.87 129.9 8.83

1″ 134.9 – 134.4 – – –

2″ 136,8 7.74–7.85 – 7.73–7.81 7.71–7.80

3″ 120.3 – – – 119.4 –

3″‑COCH3 205.1 – 195.0 – 192.4 –

3″‑COCH3 28.1 2.60 39.1 2,63 39.9
39.8

2.63
2.61

4″ 161.3 – 156.5 – 161.4 –

4″‑OH – 11.93 – – – –

5″ 118.1 6.91 – 7.41–7.47 – 7.51

6″ 132.0 7.74–7.85 – 7.73–7.81 – 7.71–7.80

Fig. 8 HSQC spectra of complexes 12 (a) and 13 (b) with some correlations
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4% of hemolysis. This finding highlights that complexes 
are slightly hemolytic at 256 μg/mL.

Conclusion
In summary, two novel binuclear complexes of Co(II) 
with a novel multifunctional azo ligand incorporating a 
thiophenic and a phenolic moiety have been prepared, 
and their structures fully assigned on the basis of the 
available elemental, powder XRD and spectroscopic 
data. IR spectral data show that ligand 11 behaves 
as a hexadentate ligand in 12, coordinating via all 

electron-donating oxygen atoms, and as a tetradentate 
ligand in 13, coordinating via all oxygen atoms except 
that of carboxylic acid functions. It was established 
that in both complexes the central Co(II) ions were 
 sp3d2 and  dsp2 hybridized in 12 and 13, respectively. 
The models of metal ion binding to the coordination 
sites of chelating ligands display octahedral and planar-
square geometries in complexes 12 and 13 respectively 
in agreement with their UV–Vis data. From the biologi-
cal screenings carried out on selected strains of mul-
tiresistant bacteria, it was found that compared to the 
free ligand, the coordination compounds have relatively 

Fig. 9 HMBC spectra of complexes 12 (a) and 13 (b) with some correlations

Fig. 10 COSY 1H‑1H spectrum of ligand 11 with some correlations
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very low activity on most of the tested strains. Never-
theless, further similar studies need to be carried out 
on a more large number of pathogens before a rational 
conclusion could be drawn on the structure–activity 
relationship linked with the coordination process.

Materials and methods
Instrumental method
All the reagents mentioned in this work were pur-
chased from Aldrich and Fluka and were used without 
further purification. Melting points are corrected and 
were determined with a STUART SCIENTIFIC Melting 
Point Apparatus Model SMP3 at a heating rate of 2  °C/
min. TLCs were performed on prefabricated silica gel 
plates, consisting of silica gel 60  F254 on aluminum foil 

Fig. 11 COSY 1H‑1H spectra of complexes 12 (a) and 13 (b) with some correlations

Fig. 12 Structures of the FMO (HOMO and LUMO) (a) and MEP (b) of compound 11 

Fig. 13 Ex situ PXRD pattern (Cu Kα1 radiation) of XRD 
of compounds 11 (black) and 13 (green)
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with a fluorescent indicator. A mixture of ethyl acetate 
and hexane (1:1) was used as eluent to develop the TLC 
plates and the spots were visualized using iodine vapor 
or by spraying with 10%  H2SO4 and heating at 100 ℃ for 
2 min. The IR spectra were recorded with a Bruker Alpha 
spectrophotometer using the ATR (Attenuated Total 

Reflectance) technique on a diamond crystal. The HRESI-
MS spectra were recorded on a Compact BRUKER brand 
spectrometer with a DIONEX Ultimate 3000 brand LC 
chain. Nuclear magnetic resonance (NMR) experiments 
(1D and 2D) were performed in DMSO-d6 and MeOH-
d4/CCl4 on a 400  MHz JEOL ECZ spectrophotometer 

Fig. 14 Optimized 3D view of compounds 11, 12 and 13. The structures were drawn with the program ACD/3D viewer (freeware) of ACD/Labs

Table 4 Antimicrobial activity (MIC and MBC in µg/mL) of synthesized compounds as well as reference antimicrobial drugs

/ not determined, MIC Minimum Inhibitory Concentration, MBC Minimum Bactericidal Concentration
* Ciprofloxacin was tested together with compounds 7, 11, 12 and 13

Coumpounds Inhibition 
parameters

S. aureus 
ATCC25923

P. aeruginosa E. coli ATCC25922 K. pneumoniae 22

7 MIC
MBC
MBC/CMI

32
 > 256
/

128
 > 256
/

64
 > 256
/

64
 > 256
/

11 MIC
MBC
MBC/CMI

32
 > 256
/

64
 > 256
/

64
 > 256
/

128
 > 256
/

12 MIC
MBC
MBC/CMI

128
 > 256
/

32
 > 256
/

 > 256
 > 256
/

64
 > 256
/

13 MIC
MBC
MBC/CMI

64
 > 256
/

64
 > 256
/

128
 > 256
/

64
 > 256
/

Reference drugs* MIC
MBC
MBC/CMI

8
16
2

8
16
2

16
32
2

16
32
2

Table 5 Cytotoxicity of compounds against red blood cells

Compounds Cell lysis (%)

4 µg/mL 8 µg/mL 16 µg/mL 32 µg/mL 64 µg/mL 128 µg/mL 256 µg/mL

7 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0

12 0 0 0 0 0 0 1,76 ± 0,000

13 0 0 0 0 0 0 2.44 ± 0.003
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equipped with 5-mm digital auto tune Royal probe (JEOL 
USA, Peabody, MA). 1H-NMR spectral data were 
recorded at 400 MHz, while 13C-NMR data were meas-
ured at 100 MHz both with TMS used as internal refer-
ence. Powder XRD data was collected on a STOE Stadi-p 
X-ray powder diffractometer (STOE & Cie GmbH, Darm-
stadt, Germany) with Cu  Kα1 radiation (λ = 1.54056 Å; Ge 
monochromator; flat samples) in transmission geometry 
with a DECTRIS® MYTHEN 1  K detector (DECTRIS, 
Baden-Daettwil, Switzerland). Elemental analyses were 
performed with a Euro Vector CHNS-O element ana-
lyzer (Euro EA 3000) or a vario MICRO Cube (Co. Ele-
mentar Analysen Systeme). Theorical calculations were 
performed with Gaussian 9 software in a B3LYP/6-311G 
mode.

Synthesis of 2-[(E)-(3-acetyl-4-hydroxyphenyl)
diazenyl]-4-(2-hydroxyphenyl)thio-phene-3-carboxylic 
acid (11)
To the thienyldiazonium ion in solution, 1.35  g 
(9.93 mmol) of 10 was added dropwise with stirring over 
30 min and the mixture was further stirred for an addi-
tional 30 min to complete the reaction. At the end of this, 
5 mL of a potassium bicarbonate solution (10%  KHCO3) 
was added in small portions to the mixture to neutral-
ize the excess acid. 10 min later, a volume of 50 mL of ice 
water was added to the mixture and the latter was left to 
stand for 24 h before being filtered. The product obtained 
is then washed cold and then hot with water to remove 
any impurities in order to give 1.97 g of 11 (from 2 g of 
7) as dark green powder;  Rf: 0.6, mp: 296–298  °C, yield 
55.97%; HRESI-MS: 405.0574 (M + Na, 0.54%). UV–Vis: 
λmax (acetone): 332, 445, 586  nm. IR (ATR): 1450  cm−1 
(N=N), 1667 (C=O)acid, 1729 (C=O)ketone, 1166 (C–O), 
3541 (2′-OH), 3248 (4″-OH), 2579 (3-COOH)  cm−1. 1H 
NMR (DMSO-d6) δ ppm: 8.69 (dd, 1H, J = 8.1 and 1.2 Hz, 
H-6′), 7.80 (m, 1H, H-4′), 7.46 (m, 1H, H-5’), 7.21 (d, 1H; 
J = 7.1 Hz, H-3′), 6.94 (s,1H, H-5), 7.74 (d,1H, J = 1.9 Hz; 
H-2″), 6.91 (d, 1H, J = 8.1  Hz; H-5″), 7.85 (dd, 1H, 
J = 8.1 and 1.9 Hz; H-6″). 13C NMR (DMSO-d6) δ ppm: 
154.5 (C-2), 154.2 (C-3), 184.8 (3-COOH), 148.4 (C-4), 
119.7 (C-5), 115.6 (C-1′), 155.5 (C-2′), 117.7 (C-3′), 
136.0 (C-4′), 126.0 (C-5′), 129.5 (C-6′), 134.9 (C-1″), 
136.8 (C-2″), 120.3 (C-3″), 205.1 (3″-COCH3), 161.3 
(C-4″), 118.1 (C-5″) and 132.0 (C-6″). Anal. Calcd. for 
 C19H14N2O5S (382.0623): C, 59.68; H, 3.69; N, 7.33; S, 
8.38; found: C, 59.70; H, 3.68; N, 7.31; S, 8.37.

Synthesis of complexes 12 and 13  ([Co2(C19H12N2O5S)2])
To a magnetically stirred solution of the ligand 11 
(300  mg; 0.79  mmol) in DMSO (4  mL) a solution of 
Co(C2O4)‧2H2O (140  mg; 0.77  mmol) in 3  mL EtOH/
MeOH (2:1) was gradually added and the reaction 

volume made up to 20 mL with ethanol. After 48 h, the 
product formed was collected by simple filtration then 
washed with ethanol after 10 days to give 53 mg of 12 as 
a black precipitate. From the resulted filtrate, 45 mg of 13 
was collected after 30  days as a green precipitate. After 
washing, the complexes were left to stand and the sol-
vent evaporated after 24 h. Compound 12:  Rf: 0.66, mp: 
288–290  °C, yield 31.18%; HRESI-MS: 878.9684 (M + H, 
0.10%). UV–Vis: λmax (acetone): 332, 436, 490, 590  nm. 
IR (ATR): 3258  cm−1 (OH)chelated, 1713 (C=Oketone), 
1713 (C=Oacid), 1446 (N=N), 528/548 (Co–O)  cm−1. 1H 
NMR (MeOH-d4/CHCl3-d1) δ ppm: 8.83 (s, 2H, H-5), 
7.41–7.47 (m, 2H, H-3′), 7.73–7.81 (m, 2H, H-4′), 7.41–
7.47 (m, 2H, H-5′), 8.87 (m, 2H, H-6′), 7.73–7.81 (m, 
2H, H-2″), 7.41–7.47 (m, 2H, H-5’’), 7.73–7.81 (m, 2H, 
H-6’’). 13C NMR (DMSO-d6) δ ppm: 179.9 (3-COOH), 
148.4 (C-4), 129.1 (C-5), 115.2 (C-1′), 156.0 (C-2′), 117.0 
(C-3′), 135.3 (C-4′), 125.3 (C-5′), 129.6 (C-6′), 134.4 
(C-1’’), 195.0 (3’’-COCH3) and 156.5 (C-4’’). Anal. Calcd. 
for  [Co2(C19H12N2O5S)2] (877.9592): C, 51.95; H, 2.75; 
N, 6.38; S, 7.30; found: C, 51.98; H, 2.78; N, 6.36; S, 7.27. 
Compound 13:  Rf: 0.63, mp: 214–216  °C, yield 26.47%; 
HRESI-MS: 917.0518 (M + K, 0.18%). UV–Vis: λmax (ace-
tone): 332, 382, 538  nm. IR (ATR): 2573  cm−1  (OHacid), 
1748 (C=Oketone), 1695 (C=Oacid), 1446 (N=N), 530 
(Co–O)  cm−1. 1H-NMR (MeOH-d4/CHCl3-d1) δ ppm: 
7.54 (s, 2H, H-5), 7.34–7.42 (m, 2H, H-3′), 7.71–7.80 (m, 
2H, H-4′), 7.34–7.42 (m, 2H, H-5′), 8.83 (m, 2H, H-6′), 
7.51 (m, 2H, H-5″), 7.71–7.80 (m, 2H, H-6″). 13C NMR 
(MeOH-d4/CHCl3-d1) δ ppm: 155.4 (C-2), 154.9 (C-3), 
185.6 (3-COOH), 148.1 (C-4), 115.2 (C-1’), 156.7 (C-2’), 
117.2 (C-3′), 135.7 (C-4′), 125.7 (C-5′), 129.9 (C-6′), 
192.4 (3″-COCH3) and 161.4 (C-4″). Anal. Calcd. for 
 [Co2(C19H12N2O5S)2] (877.9598): C, 51.95; H, 2.75; N, 
6.38; S, 7.30; found: C, 51.92; H, (2.77); N, 6.41; S, 7.33.

Antimicrobial evaluation
Tested microorganisms
Against four different bacterial species, the antibacterial 
activity was conducted. One Gram-positive 
Staphylococcus aureus ATCC25923 and three Gram-
negative Pseudomonas aeruginosa, Escherichia coli 
ATCC25922, and Klebsiella pneumoniae 22 were the 
chosen bacteria. These microorganisms were collected 
from our laboratory collection. The different bacterial 
species were maintained at + 4 °C and activated on  BBL® 
nutrient agar (NA, Conda, Madrid, Spain) for 24 h before 
any antibacterial test.

Determination of  minimum inhibitory concentra-
tion (MIC) and  minimum microbicidal concentration 
(MMC) The MICs were determined by the method of 
microdilution in a liquid medium [59]. Stock solutions of 
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samples were prepared in an aqueous solution of Dime-
thyl Sulphoxide 10% (DMSO, Fisher Chemicals, Stras-
bourg, France) at a concentration of 512  µg/mL. From 
these stock solutions, successive dilutions in series of 2 
were carried out in Mueller–Hinton broth (MHB). For 
each test, the sterility test (aqueous solution of DMSO 
at 10% + culture medium), the negative control (aqueous 
solution of DMSO at 10% + culture medium + inoculum) 
and the positive control (aqueous solution of DMSO at 
10% + culture medium + inoculum + reference drug) were 
included. 100 μL of each concentration were introduced 
into a well of a 96-well (200 μL per well) microtiter plate 
containing 90 μL of MHB and 10 μL of inoculum were 
added to obtain a range of concentrations varying from 
256 to 0.125 μg/mL. Plates were covered and incubated at 
37 °C for 24 h on a shaker (Flow Laboratories) at 300 rpm. 
At the end of the various incubation times, the mini-
mum inhibitory concentrations (MIC) were considered 
to be the lowest concentrations of substances for which 
we did not have any macroscopic growth materialized by 
the cloudy appearance of the well. Minimum bactericidal 
concentrations (MBCs) were determined by subcultur-
ing 10 μL (using 90 mm Petrie dishes) of the contents of 
wells where growth was not visible to the naked eye with 
Mueller–Hinton Agar (MHA) medium. The MBCs were 
defined as the lowest concentration that produced no 
growth following subculturing. Each test was run three 
times.

Cytotoxicity assay The animals were bred in the animal 
house of the University of Dschang, Cameroon. The study 
was conducted according to the ethical guidelines of the 
Committee for Control and Supervision of Experiments 
on Animals (Registration number 173/CPCSEA, issued 
January 28, 2000), Government of India, on the use of 
animals for scientific research. Euthanasia was done using 
noninhaled agents. Hence, all the rats were anaesthe-
sized via intraperitoneal injection of the mixture of keta-
mine (50 mg/ kg body weight, BW) and xylazine (10 mg/
kg BW), in a dose that is commonly used for operation 
purposes. A conical tube containing EDTA as an antico-
agulant was used to collect 10 mL of whole blood from 
albino rats using a heart puncture. Centrifugation at room 
temperature for 10  min at 1000 × g was used to collect 
erythrocytes, which were then washed three times in PBS 
buffer [60]. The cytotoxicity was evaluated as previously 
reported [60]. Death was confirmed using a combina-
tion of criteria including lack of pulse, breathing, corneal 
reflex, response to firm toe pinch; inability to hear respira-
tory sounds and; graying of the mucous membranes and 
rigor mortis before disposal of any animal remains.
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