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Abstract 

Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, 
and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflam-
matory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model 
was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring 
method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 com-
pounds were mapped on the pharmacophore model. After applying Lipinski’s rule of five, 391 hits were obtained. All 
the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with bind-
ing site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns 
molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed 
that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach 
suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern 
of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new 
potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.
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Introduction
The immune system defends against external and inter-
nal pathogens by using innate and adaptive immunity 
[1]. The innate immune system is the body’s first line of 
defense against foreign invaders. Various pattern recog-
nition receptors (PRRs) are used by the innate immune 
system to determine consistent microbial patterns [2]. 
NOD-like receptors (NLRs) are described as intracellular 
PRRs which play an essential role in sensing the mole-
cules linked with intracellular receptors and stress con-
ditions. Thus, they sense different stimuli which present 
microbial infection and damage [3]. The NLRs consist 
of various members, including NLRP2, NLRP3, NLRP4, 
NLRP6, NLRP7, NLRP10, and NLRP12 [4]. Among them, 
NLRP3 is the most characterized member of the NLRs 
family. It is organized into three domains: an amino-ter-
minal pyrin domain (PYD), a central nucleotide-binding 
domain (NACHT), which exhibits ATPase activity, also 
promotes self-oligomerization and a carboxy-terminal 
leucine-rich repeat (LRR) domain that acts as auto-inhib-
itory domain and plays an active role in signaling [5]. The 
PYD, NACHT, and LRR domains containing protein-3 
were discovered as an important part of inflammasome 
[6, 7]. The inflammasomes are multi-protein complexes, 
composed of sensor protein (NLRP3), adaptor protein 
apoptosis-associated speck-like protein (ASC), and pro 
caspase-1 [8]. Under favorable conditions, the NLRP3 
inflammasome localized at cytosol. Meanwhile, the pres-
ence of exogenous invaders or activators such as patho-
gens-associated molecular patterns, damage-associated 
molecular patterns, and environmental stress allows 
NLRP3 to associate with ASC by homotypic PYD inter-
actions. Then, ASC binds with pro caspase-1 via homo-
typic caspase recruitment domain (CARD), and forming 
NLRP3 inflammasome complex. The caspase-1 facilitates 
the maturation of cytokines, (IL)-1β and interleukin-18, 
which starts the inflammation process, termed as pyrop-
tosis [9–11]. Aberrant expression of NLRP3 contributes 
to multiple inflammatory disorders, including obesity, 
diabetes, dyslipidemia, hypertension, traumatic brain 
injury, and cerebrovascular disease [12–17]. Accumulat-
ing evidence shows the relationship between diabetes 
and NLRP3 inflammasome. Tschopp et al. first reported 
that NLRP3 act as sensor for metabolic danger that might 
facilitate the diabetes progression [18]. NLRP3 inflamma-
some activation affects insulin sensitivity and glucose tol-
erance, which promotes (IL)-1β and interleukin-18. The 
over expression of (IL)-1β causes endoplasmic reticulum 
stress and oxidative stress, which can lead to pancreatic 
cell death, affects T-cell activation, disrupt the func-
tion of islets β cells, and lead to diabetes [19]. A recent 
study reported that NLRP3 over expression contributes 
to diabetes related disorders, including atherosclerosis, 

diabetic nephropathy, and cardiomyopathy. Despite the 
advancement in therapeutic options, the management 
of diabetes and its complicated disorders become a sig-
nificant challenge. The development of novel inhibitors 
by targeting the NLRP3 inflammasome, is a key player 
in pathogenesis of these disorders. Recently, computer 
aided drug discovery changed the way in which most 
effective drugs are designed by allowing the research-
ers to screen, and analyze the large database of com-
pounds for therapeutic candidates against targeted 
proteins [20]. In this study, we used different computa-
tional approaches, including Pharmacophore-based vir-
tual screening, molecular docking, MD simulations, and 
MM-PBSA calculations to predict the new and potential 
inhibitors against NLRP3 protein.

Computational methodology
Ligand‑base pharmacophore generation
A pharmacophore is a chemical framework which con-
tains the structure features of known active compounds. 
A ligand based pharmacophore model is developed based 
on known active, and specific compound, Tranilast [21] 
by using the pharmacophore query editor wizard of 
molecular operating environment (MOE). The MOE 
used an in-built set of pharmacophore features contain-
ing an aromatic center, H-bond donor, H-bond accep-
tor, cationic or anionic atom, hydrophobic atom, and Pi 
ring center [22]. In current study, the essential chemi-
cal features i.e. hydrogen bond donors, hydrogen bond 
acceptors, atom Q, and hydrophobicity were utilized to 
develop pharmacophore model.

Pharmacophore validation
Analysis of validated pharmacophore is essential to 
ensure the accuracy of molecular model and verify its 
reliability [23]. The developed pharmacophore model 
was validated by the Guner-Henry (GH) method [24], 
in which the internal database comprised of in-active 
(1319) (decoys) and experimentally active (150) com-
pounds. The active inhibitors for NLRP3 were retrieved 
from literature and decoys were obtained in smile format 
from active inhibitors by LiDEB server, and builder in 
MOE was used for the generation of three dimensional 
structures [25], and the internal database screening was 
carried out through pharmacophore search protocol in 
MOE.

GH score was calculated by a mathematical formula.

The statistical parameter of Ht presents a number of 
compounds considered as hits; Ha indicates a num-
ber of actual actives in hits; A express number of active 

(1)
GH = [Ha(3A+Ht)/4HtA] ∗ (1−Ht−Ha/D− A)
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molecules in internal database; D indicates total number 
of molecules in internal database. The higher score of GH 
represents the performance of pharmacophore model is 
good. The Pharmacophore model was further used for 
virtual screening process.

Evaluation of  drug like  features The pharmacophore-
based virtual screening of databases are considered to be 
the most crucial tool for drug discovery and brings infor-
mation about electronic and geometric features that are 
involved in binding interaction with receptor [26]. Prior 
to conducting the virtual screening, ZINC (12,000 mol-
ecules), In-house (1700 molecules), and Phytochemi-
cal (5000 molecules) databases were used. These ZINC, 
and Phytochemical databases are the largest and openly 
available databases, usually employed to identify the most 
effective inhibitors against different diseases. To gener-
ate more refined and precise databases, all the databases 
were cleaned, subjected to 3D protonation by using the 
MMFF94 force field and energy minimized with an RMS 
gradient of 0.05 by using the energy minimize application 
in MOE [27]. In addition, the force field partial charges 
were computed and hydrogen was added. Because of 
screening 349, 186, and 111 hits were extracted from 
ZINC, In-house, and Phytochemical libraries, respec-
tively. Identification of drug-likeness predicts new hits 
by virtual screening [28]. Therefore, the screened com-
pounds were filtered by Lipinski rule of five (RO5), and 
ADMET [29, 30], for searching the drug-likeness prop-
erties and pharmacokinetics, respectively. The screened 
compounds were short-listed by RO5 in MOE. According 
to RO5, a drug like molecule has a hydrogen bond donors 
(< 5), hydrogen bond acceptors (< 10), molecular weight 
(< 500 Da), polar surface area not greater than 140 Å and 
lipophilicity (logP < 5). Pan assay interference compounds 
(PAINS) (http:// biosig. unime lb. edu. au/ pkcsm/ predi cat-
ion) is an electronic filter used to study the compounds 
quality in the database. PAINS analyze the compounds 
which are chemically reactive, more assay interfering, 
predict pharmacokinetics properties of screened com-
pounds. Thus, it is important to study the combination 
of filtered compounds in order to obtain the desired 
pharmacokinetics properties. For the analysis, the smile 
format of the compounds were passed through filter in 
PAINS server and ADMET properties were predicted. All 
the compounds that obeyed the RO5 and passed the PAIN 
filters were subjected to molecular docking and MS simu-
lation studies.

Molecular docking
Molecular docking analysis predicts the binding interac-
tion between macromolecules or small molecules with 
protein receptors at the atomic level. It can identify the 

binding mode of small molecules into the protein-bind-
ing site [31–34].

Structure preparation
The three-dimensional structure of NLRP3 with (PDB ID: 
7ALV) was retrieved in PDB format from RCSB Protein 
Data Bank. Before molecular docking, protein structure 
was prepared, correcting the protein structural issues, 
structure protonation, and structure minimized to a spe-
cific gradients, by using the quick prep option of MOE. 
Water molecules and other co-factors from protein 
structure were eliminated and H-atoms were added [35].

Active site residues prediction
For molecular docking study, active sites was selected 
from the literature. The active site residues of NLRP3 
such as Ala226, Ala227, Arg351, Pro352, Arg578, and 
lys232, reported by ishania and dekker were used for 
molecular docking study [35, 36]. In the docking parame-
ter of MOE, we set force field to MMFF94x, obtaining the 
gradient setting of 0.05 kcal/mol and the triangle matcher 
placement algorithm was applied. London dG method 
was used to score the poses [37]. After examining the 
docking results, total 6 hits from these databases were 
selected for MD simulations based on binding interac-
tion, and S score. The S score observed the interactions, 
the lower S score with inhibitors interacting strongly with 
NLRP3 protein [38].

Molecular dynamic (MD) simulation
Combining the docking results with MD simulations 
allows the validation of docking results by confirming the 
conformational flexibility and structure stability of pro-
tein–ligand complexes. Therefore, the protein–ligand com-
plexes were used to interact in a simulated environment for 
a specific period and trajectories were computed, afford-
ing the overall data by molecular motions as a function of 
time. MD simulation was employed via Amber2022 [39]. 
Force field plays significant role in MD simulation as they 
compute the potential energy of protein–ligand complexes 
[40]. In this work, generic AMBER force field (GAFF) was 
used for ligands and the FF14SB AMBER force field was 
applied for protein. Both topology and coordinates files for 
each system were built by tleap module of AMBER 2022 
software, however, the atomic charges and topology file for 
ligands were built by antechamber suite in AMBER 2022 
[41]. Solvation is essential as it enables studying the inter-
nal motion of protein at different temperature. A truncated 
octahedral box of TIP3P molecules of water was used for 
solvating the system and water molecules were added with 
LEap module of Amber2022. An appropriate amount of 
 Na+ ions were added to neutralize the system. The Parti-
cle Mesh Ewald (PME) step was then employed to compute 

http://biosig.unimelb.edu.au/pkcsm/predication
http://biosig.unimelb.edu.au/pkcsm/predication
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long range electrostatic and a cut-off distance was adjusted 
to 10 Å for the non-bonded interactions [42]. The SHAKE 
algorithm was monitored to constrain hydrogen containing 
bonds, after that, each system was heated from 0 to 300 K, 
and then and then equilibration was carried out at constant 
pressure and 300 K temperature. Finally, 100 ns production 
was completed of top six complexes along with reference 
compound [43, 44].

Post dynamic analysis
The generated trajectories from MD simulation of NLRP3 
and hits were saved. Post MD analysis was performed by 
implementing the CPPTRAJ module in AMBER2022 
package.

MMPBSA binding free energy
The binding free energy of protein–ligand complexes was 
calculated to signify their thermodynamic stability and 
binding affinity, which are closely associated with com-
pound’s potency [45]. In present study, the Poisson–Boltz-
man (MM-PBSA) technique was used to compute the 
binding energy of all complexes.

The binding free energy was calculated by following 
equations.

where ΔG bind represents binding free energy; ΔG com-
plex denotes free energy of complex; ΔG ligand and ΔG 
receptor are free energy of ligand and receptor in com-
plex system, respectively.

Dynamical cross‑correlation matrix (DCCM)
DCCM were generated to better understand protein 
dynamics by analyzing cross correlation shift of backbone 
atoms. DCCM helps to provide protein dynamic simula-
tion, representing how atomic displacement is coupled 
[46–48], denote amino acids correlation. In order to deter-
mine DCCM, the following equation was used.

Both, Δri and Δrj were displacements from mean posi-
tion of  ith and  jth atoms respectively. The resulting values 
computed were from (−  1 to 1). A negative value repre-
sents negatively correlated movement and a positive value 
implies positive correlated motion [49].

Result
Ligand base pharmacophore model generation 
and validation
The pharmacophore was generated by using known 
active compound, Tranilast with (Pub Chem ID 

�G (bind) = �G (complex)− [�G (receptor) + �G (ligand)]

Cij =
��ri· �rj

〉

(

� �rI��
2 < �rJ < �ri >2

)

1
/

2

5282230). Then, internal database was generated, which 
is composed of 150 active compounds and 1318 inactive 
compounds to properly assess the discriminative ability 
of the generated pharmacophore model by GH method. 
The generated database underwent screening against the 
pharmacophore model to verify its accuracy. The model 
identified 8 compounds, of which six were active and 
two were inactive, which indicates that model can dif-
ferentiate between active and inactive compounds. Sev-
eral essential parameters were calculated including active 
hits (Ha), total hits (Ht), % ratio of actives, % yield of 
actives, Enrichment factor (E), and GH score which were 
illustrated in Table 1. GH score between 0.7 and 0.8 pre-
sents a good model [50]. The goodness score of our vali-
dated pharmacophore was 0.76, which indicated that our 
resultant pharmacophore was efficient to be further used 
against different databases for virtual screening purpose.

The generated pharmacophore model has seven phar-
macophore features, including two Hydrophobic Atom 
(F1 and F3), one H-bond donor (F2), one H-bond accep-
tor (F4), one H-bond donor and acceptor (F5), Atom Q 
(F6) and one Hydrophobic (F7) as illustrated in (Fig. 1).

Virtual screening
The validated pharmacophore model was used to screen 
ZINC, In-house, and Phytochemical databases to identify 
new hits. Subsequently, because of screening, 349, 186, 
and 111 structurally diverse hits from ZINC, In-house, 
and Phytochemical databases were retrieved, respec-
tively. Compounds that obey Lipinski’s rule of five are 
considered to be active in the human body [51]. There-
fore, our study examined various properties including 
H-bond donor, molecular weight, logP value, and H-bond 
acceptor of compounds. As a result of Lipinski’s rule of 
five filtering, 205, 101, and 85 hits that meet the criteria 
for drug-like characteristics were obtained for ZINC, In-
house, and Phytochemical databases, respectively.

Table 1 Validation of pharmacophore model by GH score

NO Parameters Model 
assessment

1 Total molecules in database (D) 1468

2 Total number of actives in database (A) 150

3 Total hits (Ht) 8

4 Active hits (Ha) 6

5 % Yield of actives[(Ha/Ht) × 100] 75

6 % Ratio of actives [(Ha/A) × 100] 4

7 Enrichment factor (E) [(Ha × D)/(Ht × A) 7

8 False negatives [A−Ha] 144

9 False positives [Ht−Ha] 2

10 Goodness of hit score (GH) 0.76
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Molecular docking analysis
In the MOE (2016) software, molecular docking was 
carried out to explore the binding interaction of ligands 
against target protein. We docked 205, 101 and 85 diverse 
hits from ZINC, In-house and Phytochemical databases, 
respectively, into active sites of NLRP3 NACHT domain. 
The docking results from MOE revealed that hits could 
be strongly accommodated into the binding pocket of 
NLRP3. From each database, the top 50 ranked confor-
mations of protein–ligand complexes were saved based 
on docking score. The resultant binding interaction 
between protein and hits were visualized. We identified 
30 best hits after filtering those inhibitors, which possess 
interactions with active site residues.

Hits optimization on the basis of binding affinity 
and binding energy
The binding interaction and binding energy of selected 
inhibitors (30) from each library along with refer-
ence compound were studied. Finally, the 06 best hits 
(02 from each database) were finalized based on dock-
ing score and interaction (Table  2). As demonstrated in 
(Fig.  2a), the binding mode of reference compound in 
the active site of NLRP3 showed two hydrogen bonds 
with active site residues of NLRP3 (Ala227, Glu369) 
and one pi-cation (Arg578) along with binding score 
− 8.456 kcal/mol (Table 2). In ZINC database, compound 
ZINC12359085 exhibited one pi-H bond with Ile141 
and four H-bonds with Pro352, Arg578, and Glu629 
(Fig. 2b), with − 8.435 kcal/mol docking score. Similarly, 

compound ZINC72288245 demonstrated five hydrogen 
bonds (Thr439, Thr439, Arg578, Arg578 and Met661) 
in the binding site of NLRP3 (Fig.  2c). The compound 
ZINC72288245 revealed − 9.897 kcal/mol docking score.

In case of In-house database, compound BA-II-51 
formed two H-bonds (Ala227, Ala228) and two pi-H 
bonds (Thr662) with binding pocket residues along 
with a docking score of −  12.654  kcal/mol (Fig.  2d). In 
addition, compound BA-II-45 exhibited four hydrogen 
bonds with various residues (Ala227, Ala228, Arg578, 
and Glu629) and two pi-H bonds with Thr662. For this 
compound, the docking score of −  10.987 kcal/mol was 
observed (Fig. 2e).

As depicted in Fig.  2f, compound 5,280,448, formed 
three hydrogen bonds with Ala227, Met408, Arg578 resi-
dues and − 7.987 kcal/mol docking score. Similarly, com-
pound 115,089, formed three H-bonds (Ala227, Arg578, 
and Glu629) and pi-H bond interactions (Pro352) with 
− 9.478 kcal/mol docking score Fig. 2g.

The detail of binding interactions of the top 6 hits along 
with reference compound are presented in Fig. 2.

PAINS filter assay
During drug designing, it is important to pass the com-
pounds into various filtration for desirable pharmacoki-
netics properties. Therefore, all the six compounds along 
with reference were successfully passed through elec-
tronic filter. The results indicate that these compounds 
have desirable pharmacokinetics properties. Table 3 pre-
sented the PAINS filter results, compound structures and 
their IUPAC names.

Molecular dynamic (MD) simulation and its analysis
The MD simulation was carried out to check the stability 
of selected compounds along with reference compound. 
The trajectories analysis was performed by using the 
CPPTRAJ module of AMBER software and post simula-
tion analysis such as RMSD, RMSF, DCCM, PCA, hydro-
gen bond analysis, and binding free energy calculation 
were performed.

Root mean square deviation
Root mean square deviation evaluates the differences in 
the backbone of protein complexes, from its initial struc-
tural state to final conformation state [52].

The larger deviation curve represents lower stability 
and smaller deviation curve represents higher stabil-
ity. The MD simulation results revealed that reference 
compound showed high deviation as compared with 
other selected compounds (Fig. 3). The RMSD curve for 
Tranilast-NLRP3 complex presenting 5–5.5  Å deviation 
throughout MD simulation period, presents maximum 
instability.

Fig. 1 Chemical characterization of reference compound, F1: HydrA 
(green), F2: H-bond donor (purple). F3; HydrA (green), F4; H-bond 
Acceptor (blue), F5; H-bond donor and Acceptor (light purple), F6; 
Atom Q (yellow), F7; Hydrophobic (green)
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In ZINC database, the ZINC12359085-NLRP3 com-
plex showed low RMSD value of 1.5–3.0 Å during 70 ns 
simulation period. Moreover, it oscillates at 3.5 Å around 
75–85  ns, afterward gradually decreased (Fig.  3a). The 
ZINC72288245-NLRP3 complex revealed low deviations 
during 30  ns, after that it drastically jumped to 3.2  Å 
from 45 to 90 ns during MD simulation period (Fig. 3b). 
However, the complexes were more stable than reference 
compound.

The dynamic stability of BA-II-51 and BA-II-45 were 
computed to identify the binding stability. Interest-
ingly, BA-II-51-NLRP3 complex presented local devia-
tion, (1.2–2.5 Å), showed a dynamically stable behavior 
than other selected compounds (Fig. 3c). Therefore, our 
results showed that the BA-II-51-NLRP3 complex was 

more stable than Tranilast-NLRP3 complex, as it pre-
sented little deviation and more stable behavior than 
reference compound. As shown in (Fig. 3d), the RMSD 
curve for BA-II-45-NLRP3 complex showed 1–2.5  Å 
around 30  ns, but later jumped to 3.2–3.5  Å, during 
30-80 ns simulation period. On the other hand, in phy-
tochemical database, the RMSD graph for 5,280,448-
NLRP3 complex exhibited 3.5-5  Å during MD 
simulation, showed unstable behavior like reference 
compound (Fig.  3e). In addition, the 115,089-NLRP3 
complex exhibited high fluctuations 10–30  ns at 5  Å 
RMSD, which presented comparatively unstable behav-
ior unlike other compounds. (Fig.  3f ). We also calcu-
lated an average RMSD curve for complex systems. 
The average RMDS values for ZINC12359085-NLRP3, 

Table 2 Protein ligand interaction (PLI) detail of 06 top most compounds in complex with NLRP3 NACHT domain

Compound Docking score Docking interaction result

Ligand Receptor Interaction Distance E E(kcal/
mol)

ZINC12359085 − 8.435 S1 8 OE1 GLU 629 H-donor 3.57 − 2.5

N2 10 CB PRO 352 H-acceptor 3.34 − 0.6

03 13 NH1 ARG 578 H-acceptor 2.78 − 3.2

03 13 NH2 ARG 578 H-acceptor 2.97 − 2.0

6-ring CD1 ILE 411 Pi-E 3.61 − 0.6

ZINC72288245 − 9.897 C10 17 SD Met 661 H-donor 4.09 − 0.6

O1 3 NH2 ARG 578 H-acceptor 3.52 − 1.3

03 15 OG1 THR 439 H-acceptor 2.78 − 2.2

04 16 OG1 THR 439 H-acceptor 2.79 − 0.8

04 16 NH1 ARG 578 H-acceptor 3.36 − 1.8

BA-II-51 − 12.654 S 12 CA ALA 227 H-acceptor 3.92 − 0.5

S 12 N ALA 228 H-acceptor 4.31 − 1.8

N 9 6-ring THR 662 H-pi 4.30 − 0.9

N 13 6-ring THR 662 H-pi 4.45 − 0.9

BA-II-45 − 10.987 C 15 OE1 GLU 629 H-donor 3.36 − 0.5

0 11 NH1 ARG 578 H-acceptor 2.67 − 0.7

S 12 CA ALA 227 H-acceptor 3.77 − 0.5

S 12 N ALA 228 H-acceptor 3.43 − 2.5

N 9 6-ring THR 662 H-pi 4.33 − 1.0

N 13 6-ring THR 662 H-pi 4.27 − 0.9

5,280,448 − 7.987 0 4 CA ALA 227 H-acceptor 2.90 − 0.5

0 1 NH2 ARG 578 H-acceptor 2.97 − 0.9

6-ring N MET 408 H-donor 3.70 − 0.9

115,089 − 9.478 CO 1 OE1 GLU 629 H-donor 3.03 − 1.7

0 4 0 ALA 227 H-donor 2.90 − 0.5

0 1 NH2 ARG 578 H-acceptor 2.97 − 0.9

6-ring CG PRO 352 Pi-H 3.70 − 0.9

Tranilast (Reference 
compound)

− 8.456 0 15 OE1 GLU 369 H-donor 2.84 − 2.2

0 11 N ALA 227 H-acceptor 3.21 − 0.8

6-ring NH1 ARG 578 Pi-cation 3.71 − 0.5
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ZINC72288245-NLRP3, BA-II-51-NLRP3, BA-II-
45-NLRP3, 5,280,448-NLRP3, 115,089-NLRP3, and 
Tranilast-NLRP3 were found to be 3.18 ± 0.006, 
3.34 ± 0.062, 3.050 ± 004, 3.19 ± 0.005, 4.099 ± 0.008, 

3.84 ± 0.006, and 4.35 ± 0.008 respectively. As minor 
fluctuations with less RMSD value indicate good sys-
tem stability [53]. Overall the RMSD analysis indi-
cates that the hits predicted as active against NLRP3 

Fig. 2 Binding interaction of protein–ligand; A Interaction of Tranilast; B Ligand interaction of ZINC12359085; C Ligand interaction 
of ZINC72288245; D Ligand interaction of BA-II-51; E. Ligand interaction of BA-II-45; F Ligand interaction of 5,280,448; G Ligand interaction 
of 115,089
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Table 3 PAINS results of selected compounds along with their structures and IUPAC names

Ligand PAINS filter Structure IUPAC name

ZINC12359085 Passed 5-((phenoxycarbonyl)amino)-1,2,3-thiadiazol-4-yl propionate

ZINC72288245 Passed 2-ethoxy-n-(3-(methylsulfonyl)thiophen-2-yl)propanamide

BA-II-51 Passed n-(2,5-dichlorophenyl)-2-isonicotinoyl-2-methylhydrazine-1-carboth-
ioamide

BA-II-45 Passed n-(2-bromophenyl)-2-nicotinoylhydrazine-1-carbothioamide

5,280,448 Passed 7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one

115,089 Passed 2,3-bis(3-hydroxybenzyl)butane-1,4-diol

Reference compound Passed 2-(3-(3,4-dimethoxyphenyl)propanamido)benzoic acid
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Fig. 3 Black color in all graphs presenting RMSD for Tranilast-NLRP3 complex a ZINC12359085-NLRP3 complex b ZINC2288245-NLRP3 complex c 
BA-II-51-NLRP3 complex d BA-II-45-NLRP3 complex e 5,280,448-NLRP3 complex f 115,089-NLRP3 complex
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drug target from the ZINC, In-house and Phytochemi-
cal database, revealed low average RMSD values than 
reference compound (Table  4). The dynamic stability 
assessment of these compounds showed stable pharma-
cological behavior and may have better pharmacologi-
cal efficiency in experimental set up.

Residues flexibility indexing
Root mean square fluctuations (RMSF) measure 
the residues flexibility for each complex. The region 
with low RMSF lead to rigidity, while the high RMSF 
value indicate more flexibility. In case of ZINC data-
base, ZINC12359085-NLRP3 complex showed 1–2  Å 
low fluctuations for residues 50–78 and 0.1–0.4  Å for 
residues 120–130, as compared with reference com-
pound. However, some regions show local fluctua-
tions (Fig.  4a). The ZINC72288245-NLRP3 complex 
revealed higher fluctuations at the region of 20–40 and 
50–70 while the region between 100 and 300 presented 
local fluctuations by comparing with Tranilast-NLRP3 
complex (Fig.  4b). Interestingly, for BA-II-51-NLRP3 
complex low fluctuations in 50–70 residues (2–4  Å) 
and 250–300 (1–1.5  Å) were observed. The BA-II-
51-NLRP3 complex acts as a better candidate as com-
pared with Tranilast-NLRP3 complex (Fig.  4c). In 
case of BA-II-45-NLRP3 complex same fluctuation 
was observed as ZINC12359085-NLRP3 and BA-II-
51-NLRP3 complexes (Fig. 4d). In case of phytochemi-
cal database, 5,280,448-NLRP3 and 115,089-NLRP3 
complexes, similar RMSF and local fluctuations were 
observed (Fig. 4e and f ).

In addition, the average RMSF value of all complexes, 
including ZINC1239085-NLRP3, ZINC72288245-
NLRP3, BA-II-51-NLRP3, BA-II-45-NLRP3, 5,280,448-
NLRP3, 115,089-NLRP3, and Tranilast-NLRP3 
were found to be 1.54 ± 0.05, 1.41 ± 0.04, 1.19 ± 0.03, 
2.05 ± 0.06, 1.63 ± 0.04, 1.29 ± 0.02, and 1.43 ± 0.06, 
respectively.

The average RMSF values for all the compounds 
ZINC72288245, BA-II-51, and 115,089 indicating 
potential interaction with NLRP3 protein (Table 4).

Dynamic cross correlation matrix (DCCM)
DCCM was performed to understand the anti-corre-
lated and correlated motion in NLRP3 and its docked 
complexes with ZINC12359085, ZINC72288245, 
BA-II-51, B-II-45, 5,280,448, 115,089. Seven plots for 
DCCM were generated, in which patterns of nega-
tive and positive correlated motions in protein–ligand 
complexes were presented in Fig.  5a–g. The deep 
green color indicates a positive correlation, whereas, 
brown color presents negative correlation. The posi-
tive correlated residues move in same direction and 
the negative correlated residues move in opposite 
direction. The DCCM analysis revealed that the bind-
ing site residues, where compound, BA-II-51 strongly 
bound, showed positive correlations as compared to 
reference compound (Fig.  5c). However, the BA-II-
45, ZINC12359085, and ZINC72288245 in complex 
with NLRP3 showed significant positive correlation 
motion, with minor fluctuations were observed. In case 
of Phytochemical database, the compounds 5,280,448 
and 115,089 in complex with NLRP3 protein, showed 
slightly weak negative correlation motion at 200–300 
residues (Fig.  5e and f ). The overall DCCM results 
showed that the selected compound might play signifi-
cant role in the stability of these complexes.

Clustering of protein’s motion
Motion mode analysis was performed which explored 
the favorable conformational changes in the chemistry 
of bonded hits and target protein. The PCA analysis of 
top hits is given in Fig.  6. The ZINC12359805-NLRP3 
and ZINC72288245-NLRP3 complexes consist of 
similar patterns of phase motion along with magni-
tude. The ZINC12359085-NLRP3 complex starts with 
red dot and end with blue dot, covering an area from 
− 100 to + 150 along PC1 and − 100 to + 100 along PC2 
(Fig.  6a). The ZINC72288245-NLRP3 covering area of 
from − 175 to + 100 along PC1 and − 80 to + 80 along 
PC2 (Fig.  6b). The BA-II-51-NLRP3 complex was 
arranged and compact as compared with Tranilast-
NLRP3 complex, beginning from red dot, ending to 
blue dot covering an area from − 120 to + 75 along PC1 
and − 80 to + 80 along PC2. The Tranilast-NLRP3 com-
plex was found to be so assembled and more dispersed, 
presenting that BA-II-51-NLRP3 complex showed good 
magnitude along with protein motion during 100  ns 

Table 4 Average values of RMSD and RMSF of protein–ligand 
complexes

S/NO Protein/ligand complex Average RMSD Average RMSF

1 ZINC12359085-NLRP3 3.18 ± 0.006 1.54 ± 0.05

2 ZINC72288245-NLRP3 3.34 ± 0.062 1.41 ± 0.04

3 BA-II-51-NLRP3 3.050 ± 004 1.19 ± 0.03

4 BA-II-45-NLRP3 3.19 ± 0.005 2.05 ± 0.06

5 5,280,448-NLRP3 4.099 ± 0.008 1.63 ± 0.04

6 115,089-NLRP3 3.84 ± 0.006 1.29 ± 0.02

7 Tranilast-NLRP3 4.35 ± 0.008 1.43 ± 0.06
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Fig. 4 Black color indicates RMSF analysis for Tranilast-NLRP3 complex a ZINC12359085-NLRP3 complex b ZINC72288245-NLRP3 complex c 
BA-II-51-NLRP3 complex d BA-II-45-NLRP3 complex e 5,280,448-NLRP3 complex f 115,089-NLRP3 complex
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Fig. 5 Presents the DCCM analysis a ZINC12359085-NLRP3 complex b ZINC72288245-NLRP3 complex c BA-II-51-NLRP3 complex d BA-II-45-NLRP3 
e 5,280,448-NLRP3 complex f 115,089-NLRP3 complex g Tranilast-NLRP3 complex
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MD simulation period. The BA-II-51-NLRP3 complex 
residues are almost in same energy phase (Fig.  6c), 
showing stable behavior. As shown in (Fig. 6d), BA-II-
45-NLRP3 complex, showed little disassembly but in 
arranged than Tranilast-NLRP3 complex, starting from 
red and ending in blue, covering space of − 75 to + 120 
along PC1 and − 75 to + 90 along PC2. The PCA graph 

for 5,280,448-NLRP3 complex covering the space of 
− 150 to + 150 along PC1 and − 100 to + 130 along PC2 
and 115,089 in complex with NLRP3 covering space 
of −  75 to + 150 along PC1 and −  75 to + 100 for PC2 
(Fig.  6e and f ). However, it was noted that Tranilast-
NLRP3 complex was clustered and mixed (Fig. 6g).

Fig. 6 Principal component analysis for a ZINC12359085-NLRP3 complex b ZINC72288245-NLRP3 complex c BA-II-51-NLRP3 complex d 
BA-II-45-NLRP3 complex e 5,280,448-NLRP3 complex f 115,089-NLRP3 complex and g Tranilast-NLRP3 complex
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Our results described that each compound showed 
different motions from other complexes. The change 
in motion of complexes indicated that binding of com-
pounds induced less conformational impact on NLRP3 
conformational dynamics, however, quite stabilization 
during MD simulation period.

Hydrogen bond analysis
Hydrogen bond analysis plays a significant role in observ-
ing the lifetime interactions between protein-ligands and 
helps to precise the atomic level analysis [54]. It’s pos-
sible to observe the hydrogen bond formation between 
NLRP3 and hits/reference at long production steps in 
MD in Fig. 7. The hydrogen bond analysis presented that 

both ZINC12359085 and ZINC72288245 compounds in 
complex with NLRP3 favored hydrogen bond formation 
as compared to Tranilast-NLRP3 complex (Fig.  7a and 
b). Binding of BA-II-51 with NLRP3 protein significantly 
increased the hydrogen bonding networks as comparison 
with Tranilast-NLRP3 complex (Fig.  7c). Interestingly, 
BA-II-45 has lesser effect in establishing hydrogen bonds 
(Fig.  7d). In case of 5,280,448 and 115,089 in complex 
with NLRP3 have less effect on hydrogen bond formation 
as compared with other compounds (Fig. 7e and f ). Our 
hydrogen bond analysis indicated that most of our final 
compounds strongly bond with NLRP3, which may serve 
as a potent inhibitors.

Fig. 7 Presented the hydrogen bond analysis, where black color in all graphs represent hydrogen bond analysis for Tranilast-NLRP3 complex a 
ZINC12359085-NLRP3 complex b ZINC72288245-NLRP3 complex c BA-II-51-NLRP3 complex d BA-II-45-NLRP3 complex e 5,280,448-NLRP3 complex 
f 115,089-NLRP3 complex
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MMPBSA analysis
The binding free energy of top hits with NLRP3 protein 
were computed by using the MMPBSA approach. The 
binding free energy and its components, van der Waals 
energy, surface area energy, electrostatic contribution 
to the solvation free energy, and electrostatic energy are 
enlisted in Table 5. The binding free energy and its com-
ponents calculated by MMPBSA approach are enlisted in 
Table 5. Our result showed that ZINC12359085-NLRP3 
complex has the lowest binding free energy − 27.6039 kJ/
mol, followed by ZINC72288245-NLRP3 complex, with 
value of − 25.4018 kJ/mol. The BA-II-51-NLRP3 complex 
obtained binding free energy of − 29.9161 kJ/mol, lower 
than the Tranilast-NLRP3 complex (−  25.0211  kJ/mol). 
Also, the BA-II-45-NLRP3 complex has a relative binding 
free energy of − 29.5539 kJ/mol. In Phytochemical data-
base, the 5,280,448 and 115,089 compounds with NLRP3 
obtained an affinity of −  22.7076 and −  25.4018  kJ/mol 
values, respectively. Overall results revealed that selected 
compounds have stronger binding energy than reference 
compound and might have a role in complex forma-
tion with NLRP3. It was also noted that relative bind-
ing free energy of all complexes were in agreement with 
RMSF, RMSD, PCA, hydrogen bond analysis, and DCCM 
analysis.

Discussion
NLRP3 mediate caspase-1 activation and secrete 
cytokines IL-1β during microbial infection and cellular 
damage. However, its abnormal activation is account-
able for diabetes, its complications, dementia and other 
inflammatory diseases [55–57]. A number of small mol-
ecule inhibitors for NLRP3 inflammasome have been 
identified, and some of them have demonstrated signifi-
cant therapeutic potential. Some direct inhibitors are 
available for NLRP3 inflammasome including MCC950, 
CY-09, Tranilast, OLT1177, and Oridonin. However, 
to date, none of them have FDA approved [58]. As no 
FDA-approved drugs are available for NLRP3 inflam-
masome, so there is a need to develop safe and effective 
drugs for the NLRP3 inflammasome. The current study 

focuses on the development of new inhibitors for NLRP3 
inflammasome.

Virtual screening is an essential computational 
approach, which is widely used in the process of drug dis-
covery and development. The ligand-based pharmacoph-
ore model is commonly used to discover new and potent 
ligands or inhibitors by comparing their molecular simi-
larity to known inhibitors for a specific drug target. This 
approach does not require information about the protein 
structure [59]. In previous study, we used pharmacoph-
ore based virtual screening for the identification of new 
inhibitors against STAT3 drug target [60]. In current 
study, we used pharmacophore based virtual screening 
for the identification of new inhibitors against NLRP3. 
Pharmacophore model was generated from reference 
compound and validated by GH score (0.76). The vali-
dated pharmacophore was used for the virtual screening 
of three databases. After pharmacophore based virtual 
screening, total number of 646 active hits were selected 
from these databases. During drug development process, 
it is important to analyze the pharmacological efficiency 
of a drug candidate. During drug-likeness analysis, total 
of 391 compounds were obtained from these databases 
and docked with NACHT domain of NLRP3. Based 
on docking score and binding interactions, the top six 
compounds, ZINC12359085, ZINC72288245, BA-II-
51, BA-II-45, 5,280,448, and 115,089 were selected for 
MD simulation. During the docking simulation, it was 
observed that the interaction of six compounds exhib-
ited good docking score and strong binding interac-
tions compared to reference compound. In a recently 
reported study, molecular docking of berberine against 
NLRP3 was carried out [61]. The docking score of ber-
berine was predicted as −  7.27  kcal/mol. The dock-
ing scores of our compounds ZINC12359085 (−  8.43), 
ZINC72288245 (−  9.89), BA-II-51 (−  12.65), BA-II-45 
(−  10.98), 5,280,448 (7.98), and 115,089 (−  9.47) were 
good than berberine. The selected six compounds exhib-
ited binding interaction with same active sites, as previ-
ously identified by Dekker et  al. [62], Dos Santos et  al. 

Table 5 The MMPBSA Binding Free Energy Calculation (kcal/mol) of selected hits

Compounds VDW EEL ESURF EGB TOTAL

ZINC12359085-NLRP3 − 37.5939 − 23.4732 − 4.984 24.5632 − 27.6039

ZINC72288245-NLRP3 − 34.8148 − 17.9546 − 4.8781 32.2457 − 25.4018

BA-II-51-NLRP3 − 32.2448 − 24.7622 − 4.7821 31.8731 − 29.9161

BA-II-45-NLRP3 − 48.4418 − 217.2169 − 6.2746 242.3794 − 29.5539

5,280,448-NLRP3 − 35.5954 − 9.5877 − 4.9215 27.3970 − 22.7076

115,089-NLRP3 − 34.8148 − 17.9546 − 4.8781 32.2457 − 25.4018

Tranilast-NLRP3 − 38.4999 − 24.7469 − 5.1639 43.3896 − 25.0211
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[36]. The critical residues of the NACHT domain consist 
of Ala227, Ala228, Arg351, Arg578, Glu629, and Thr662. 
By binding to these residues, it is possible to hinder the 
conformational change which is necessary for the initial 
stage of inflammasome activation [62]. By comparing 
this, the docking scores and binding interaction of six 
compounds were found to be superior compared to refer-
ence compound.

After docking, MD simulation was carried out for six 
compounds. These compounds represented good sta-
bility in MD simulation. The RMSD analysis indicated 
that the six diverse inhibitors, having better stability 
than reference compound. The RMSD analysis was fur-
ther supported by RMSF, hydrogen bond analysis, and 
DCCM analysis, which revealed that all the six inhibitors 
revealed more stability as compared to reference com-
pound. In addition, the MM/PBSA calculated from the 
last 500 frames found more negative ∆G binding value, 
than reference compound. Recent work, done by Patli 
et al. reported a similar pattern of RMSD and RMSF [63]. 
One of the active compounds predicted in this study 
with PubChem CID 5,280,448 (calycosin) is reported to 
be a primary active ingredient in Astragalus mungoholi-
cus Bunge [64]. This compound possesses a number of 
pharmacological effects, such as anti-inflammatory [65, 
66], anti-oxidant [67], and anti-osteoporotic [68] prop-
erties. The compound 5,280,448 (calycosin) can also be 
used to treat Osteoarthritis. It was reported that calyco-
sin inhibits NF-κB activation and decreases the synthesis 
of pro-inflammatory cytokines, such as IL-1β, IL-6, and 
TNF-α. The active compound PubChem CID 115,089 
(Enterodiol) was categorized as phytoestrogens because 
of its plant origin. Studies in the fields of epidemiology 
and pharmacology have demonstrated the protective 
properties of END, and in particular, its oxidation prod-
uct enterolactone (ENL), against osteoporosis, cardio-
vascular disorders, hyperlipemia, breast, colon, prostate, 
and menopausal syndrome [69]. One of the identified 
active compounds ZINC12359085 contains carbonyl, 
amino functional groups, and thiadiazole ring. Thiadia-
zole is a five-membered scaffold, which is a common and 
crucial component of many drugs and it is reported that 
this compound may reveal antibacterial, antitubercular, 
analgesic, antiepileptic, antiviral, and anticancer prop-
erties [70]. The identified compound ZINC72288245 
contains ethoxy, amide, sulphonyl functional group, and 
thiophen ring. Sulfonyl or sulfonamide functional groups 
are widely employed as pharmaceutical agents, and their 
uses in medicinal chemistry cannot be ignored [71]. 
Similarly, thiophene moiety is present in commercially 
available drugs, including Olanzapine, Benzocyclidine, 
Sertaconazole, Tioconazol, Dorzolamide, Tipepidine, and 
Tiquizium Bromide [72]. Overall, our study found that 

the newly identified inhibitors would be able to inhibit 
NLRP3 protein, which ultimately cures the disease.

Conclusion
The current study aimed to design novel NLRP3 inhibi-
tors by employing multi-level in-silico approaches. The 
molecular docking analysis resulted the top six com-
pounds, demonstrated excellent binding interactions and 
docking score. The hydrogen and hydrophobic interac-
tions between NLRP3 protein and these compounds 
revealed the involvement of key residues, namely, Ala227, 
Ala228, Arg351, Arg578, Glu629, and Thr662. They also 
exhibited drug likeness properties. MD simulations 
brought valuable insights into stability and behavior of six 
compounds, exhibiting notable affinity and stability than 
reference compound. These findings provide an excel-
lent example of pharmacophore based virtual screening 
as practical approach to deign novel NLRP3 inhibitors 
against diabetes. The outlook of the current work is that 
some experimental approaches are require to confirm the 
activity of these compounds against NLRP3.
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