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Abstract 

Novel approach for synthesizing triazine sulfonamide derivatives is accomplished via reacting the sulfaguanidine 
derivatives with N‑cyanodithioiminocarbonate. Further reaction of the novel triazine sulfonamide analogues with vari‑
ous secondary amines and anilines generated various substituted triazine sulfonamide analogues of promising 
broad‑spectrum activities including anti‑microbial, anti‑tumor, and anti‑viral properties. The in vitro anti‑proliferative 
activities of most of the novel compounds were evaluated on the NCI‑60 cell line panel. The antifungal and antibacte‑
rial activities of the compounds were also estimated. The anti‑viral activity against SARS CoV‑2 virus was performed 
using MTT cytotoxicity assay to evaluate the half‑maximal cytotoxic concentration  (CC50) and inhibitory concentration 
50  (IC50) of a representative compound from the novel triazine sulfonamide category. Compound 3a demonstrated 
potent antiviral activity against SARS‑CoV‑2 with  IC50 = 2.378 µM as compared to the activity of the antiviral drug rem‑
desivir  (IC50 = 10.11 µM). Our results indicate that, upon optimization, these new triazine sulfonamides could poten‑
tially serve as novel antiviral drugs.
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Introduction
Numerous antibiotics and other antimicrobials have been 
developed. However, the threat raised by antimicrobial 
resistance (AMR) is more recent and requires immediate 
attention [1, 2]. A significant increase in antibiotic resist-
ance have been observed on a global level in the recent 
years. Almost seventeen million people die every year 
from infectious diseases, especially bacterial infections 
[3]. Many commercially available antibiotics are consid-
ered to be ineffective for treating microorganisms that 

have developed resistance to them [4]. Antibiotic resist-
ance is a problem that has been related to antibiotic over-
use, abuse, and a lack of new efficient drugs. Bacteria are 
considered major, urgent, and alarming concerns by the 
Centers for Disease Control and Prevention (CDC), many 
of which have a significant clinical and economic impact 
on the global population [5]. Due to the rapid increase in 
resistance to currently accessible commercially available 
antibiotics, it is imperative to develop novel antibacterial 
treatments with increased action to combat drug-resist-
ant conditions [6].

In order to address drug resistance concerns and to 
treat opportunistic microbial infections, researchers have 
reported triazine core molecules displaying high antimi-
crobial potency in terms of antifungal and antibacterial. 
To fight against human disease-causing pathogens some 
studies were reported to synthesize different triazines [7–
9] such as thiazole-triazines [10, 11], quinoline-triazine 
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core [12, 13], quinazoline–triazine derivatives [14], cou-
marinyl-triazine derivatives [15], fullerene-based triazine 
compounds [16], disubstituted-s-triazines [17], tri-sub-
stituted s-triazine [18], s-triazine nucleobases [19], and 
many other s-triazine derivatives [20, 21].

Its worthy to note that there are many naturally occur-
ring and synthetic potent compounds that comprise the 
triazine ring [22]. The triazine ring system constitutes 
one of the most promising scaffolds for drug discov-
ery [23–27]. Triazine derivatives are biologically potent 
compounds with inhibitory activity towards tubulin [28], 
metalloproteinases [29], histone deacetylases [30], urease 
and tyrosinase [31]. Additionally, some of them inhibit 
protein kinases involved in critical signaling pathways 
that promote cancer cell proliferation, comprising gly-
cogen synthase kinase 3 [32], cyclin-dependent kinases 
[25], ABL kinase [33], and casein kinase 2 [34]. The range 
of potential molecular targets for these compounds was 
expanded by the addition of the sulfonamide scaffold to 
the triazine derivatives [35, 36]. The sulfonamide moiety 
has attracted a lot of interest in medicinal chemistry, as 
a number of sulfonamides have been synthesized with a 
varied range of biological activities, including anti-fungal, 
anti-bacterial, anti-oxidant, anti-diabetic, anti-inflamma-
tory [37], and anti-cancer potencies [37–44]. The FDA 
has approved various sulfonamide derivatives for use in 
cancer therapy [37]. Moreover, sulfonamides are consid-
ered as effective compounds possessing inhibitory effect 
on CAs. Ethoxzolamide, acetazolamide, methazolamide 
and dorzolamide are sulfonamide drugs utilized clinically 
in treating various pathological conditions [45–47].

In addition, sulfonamides are known to be effective 
as antimicrobial drugs such as silver sulfadiazine drug 
(Fig.  1) (Flamazine, Silvadene, Ssd, Thermazene) which 
is considered as a topical sulfonamide antibiotic that acts 
on the bacterial cell wall and cell membrane; approved 
for treating burns [48]. Another example, sulfathiazole 
(Fig.  1) which  is a short-acting sulfa drug was a widely 
used oral and topical antimicrobial until less toxic alter-
natives were discovered. The use of it is still sporadic, 
occasionally in combination with sulfacetamide and sul-
fabenzamide [49]. Another sulfonamide antibiotic called 
sulfamethizole (Brand Name: Urobiotic) (Fig.  1) also is 
used to treat a wide range of susceptible bacterial infec-
tions [50]. Furthermore, sulfonamides have anti-viral 
characteristics that can be utilized to develop drugs 
against enteroviruses, coxsackievirus B, encephalomyo-
carditis viruses, human parainfluenza viruses, adeno-
viruses, Ebola virus, HIV, Marburg virus, SARS-CoV-2 
among other viruses [51].

Herein, we have synthesized novel triazines sulfona-
mides utilizing dimethyl N-cyanodithioiminocarbonate 
which is considered as an important compound used in 

the synthesis of various biologically active heterocycles 
[52, 53], noteworthy, we have previously used this active 
reagents in synthesizing many novel antimetabolite ana-
logues [54–59].

Results and discussion
Chemistry
The reaction of the substituted sulfaguanidine 1 with 
N-cyanodithioiminocarbonate 2 furnished the novel ana-
logues of the triazine sulfonamide 3. Cyclization of aryl-
sulfonyl guanidine 1a–d with compound 2 occurs in the 
presence of potassium hydroxide in dioxane under reflux 
to afford the targeted products 3a–c (Scheme 1). The 1H 
NMR spectrum of compound 3a revealed the presence of 
a singlet signal δ 2.29  ppm for the three protons of the 
methythio group, singlet at δ 7.35 for the  NH2 Protons, 
and in the range from δ 7.54 to δ 7.98 ppm the aromatic 
protons were detectable, additionally the NH protons 
was appeared at δ 11.83 ppm. The structure of the com-
pound is confirmed via single X-ray diffraction analysis 
as depicted in Fig. 2 [60].

Further reaction of the latter compounds with sec. 
amines such as morpholine, piperidine, N-methyl pipera-
zine in the presence of potassium carbonate in refluxing 
dioxane furnishes the substituted triazine sulfonamides 
4. Additionally, the reaction of compound 3 with pyrro-
lidine generated compound 5. The desired compounds 
were characterized using spectral and elemental analy-
sis. The 1H NMR spectrum of compound 5a revealed 
the presence of four multiplet signals at δ 1.76. ppm, two 
multiptet signals at δ 3.2 ppm, and two multiplet signals 
at δ 3.34 ppm of the methylene groups of the pyrrolidine 
moiety. Owing to the  NH2 signal, it was appeared at δ 
6.82 ppm, also the aromatic signals appeared at the range 
from δ 7.43 to δ 7.87 ppm, and the NH proton of the sul-
fonamide group was appeared at δ 11.19  ppm. In order 
to investigate the scope of this approach the triazine sul-
fonamides was reacted with aniline derivatives to afford a 
general methodology to the substituted triazine sulfona-
mides 7 (Scheme 2).

Biological activity
In‑vitro anti‑proliferative activity
Estimation of in  vitro antiproliferative activity was per-
formed on the NCI-60 cell line panel. The US NIH’s 
National Cancer Institute ("NCI") has selected the major-
ity of structures for its Developmental Therapeutic Pro-
gram (DTP). Various human tumor cell lines are used 
in screening procedures, including cell lines expressing 
brain, melanoma, leukemia, lung, ovarian, colon, kidney, 
prostate and breast malignancies.

The NCI screening process favors compounds 
with drug-like mechanisms of action according to 
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computer-aided design. Whether the submitted com-
pounds can diversify the NCI collection of small mole-
cule compounds will govern which ones will be utilized 
for subsequent screening.

The compounds that have been elected were tested 
on the NCI cell panel and assumed the consistent NCI 
codes NSC D-840972, NSC D-840973, NSC D-D-840979, 
NSC D-840978, NSC D-840977, NSC D-840975 & 
NSC D-840976 to signify the diverse structures of this 

research. For each compound on each NCI cell line, the 
effects are expressed as a percentage of cell growth.

The lowest cell growth promotion for compound 3a 
was against leukemia RPMI-8226 cell line (GP = 104.02%), 
non-small cell lung cancer EKVX cell line (GP = 77.46%), 
colon cancer HCT-15 cell line (GP = 96.34%), CNS 

Scheme 1. Reagents and conditions: i Dioxane, potassium 
hydroxide, reflux, 2 h. ii Dioxane, amine, potassium carbonate, reflux, 
2 h. iii Dioxane, pyrrolidine, potassium carbonate, reflux, 2 h

Fig. 2 The molecule of Structure 3a in the crystal. “The figure 
is reproduced via permission of the International Union 
of Crystallography under the open‑access licence” [60]

Scheme 2. Reagents and conditions: i Dioxane, potassium 
carbonate, reflux, 2 h
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cancer SNB-75 (GP = 74.76%), melanoma SK-MEL-5 
(GP = 72.98%), ovarian cancer OVCAR-4 (GP = 95.65%), 
renal cancer CAKI-1 (GP = 88.61%), prostate cancer PC-3 
(GP = 103.05%), and breast cancer MCF7 (GP = 84.02%). 
Compound 3b displayed the lowest cell growth promo-
tion against leukemia HL-60(TB) cell line (GP = 90.58%), 
non-small cell lung cancer EKVX cell line (GP = 80.79%), 
colon cancer HCT-15 cell line (GP = 97.17%), CNS can-
cer SNB-75 (GP = 77.59%), melanoma MALME-3  M 
(GP = 84.52%), ovarian cancer OVCAR-4 (GP = 91.13%), 
renal cancer CAKI-1 (GP = 81.13%), prostate can-
cer DU-145 (GP = 107.83%), and breast cancer MCF7 
(GP = 87.47%).

Additionally, the lowest cell growth promotion for 
compound 4a was against leukemia K-562 cell line 
(GP = 98.62%), non-small cell lung cancer HOP-92 
cell line (GP = 89.70%), colon cancer HCT-15 cell line 
(GP = 97.79%), CNS cancer SNB-75 (GP = 77.71%), 
melanoma SK-MEL-5 (GP = 92.87%), ovarian can-
cer OVCAR-4 (GP = 86.36%), renal cancer UO-31 
(GP = 85.43%), prostate cancer PC-3 (GP = 106.53%), 
and breast cancer MCF7 (GP = 93.45%). Alongside com-
pound 4b showed the lowest cell growth promotion 
against leukemia SR cell line (GP = 87.88%), non-small 
cell lung cancer EKVX cell line (GP = 90.00%), colon can-
cer HCT-15 cell line (GP = 99.61%), CNS Cancer SNB-
75 (GP = 78.73%), melanoma UACC-62 (GP = 94.30%), 
ovarian cancer OVCAR-4 (GP = 90.71%), renal can-
cer CAKI-1 (GP = 89.24%), prostate cancer DU-145 
(GP = 113.40%), and breast cancer MCF7 (GP = 91.47%).

The lowest cell growth promotion for compound 5a 
was against leukemia SR cell line (GP = 90.10%), non-
small cell lung cancer EKVX cell line (GP = 80.80%), 
colon cancer HCT-116 cell line (GP = 98.89%), CNS 
cancer SNB-75 (GP = 75.30%), melanoma UACC-62 
(GP = 80.87%), ovarian cancer OVCAR-4 (GP = 83.44%), 
renal cancer UO-31 (GP = 81.59%), prostate cancer PC-3 
(GP = 91.32%), and breast cancer MDA-MB-231/ATCC 
(GP = 88.39%). Meanwhile, compound 5b exhibited the 
lowest cell growth promotion against leukemia HL-60 
(TB) cell line (GP = 93.23%), non-small cell lung cancer 
EKVX cell line (GP = 80.41%), colon cancer HCT-116 cell 
line (GP = 95.84%), CNS cancer SNB-75 (GP = 77.45%), 
melanoma UACC-62 (GP = 87.29%), ovarian can-
cer OVCAR-4 (GP = 85.99%), renal cancer CAKI-1 
(GP = 86.60%), prostate cancer DU-145 (GP = 105.36%), 
and breast cancer MCF7 (GP = 86.42%).

Furthermore the lowest cell growth promotion for 
compound 7b was against leukemia HL-60 (TB) cell 
line (GP = 78.31%), non-small cell lung cancer EKVX 
cell line (GP = 92.73%), colon cancer HCT-15 cell line 
(GP = 98.79%), CNS cancer SNB-75 (GP = 81.18%), 
melanoma SK-MEL-5 (GP = 87.34%), ovarian 

cancer OVCAR-4 (GP = 94.63%), renal cancer CAKI-1 
(GP = 87.08%), prostate cancer DU-145 (GP = 108.61%), 
and breast cancer MCF7 (GP = 97.13%).

In conclusion it is remarkable that compound 3a the 
most potent among the estimated compounds, revealed 
remarkably lowest cell growth promotion against mela-
noma SK-MEL-5 (GP = 72.98%), CNS cancer SNB-75 
(GP = 74.76%), and non-small cell lung cancer EKVX cell 
line (GP = 77.46%). Compound 7b showed the lowest cell 
growth promotion against leukemia HL-60(TB) cell line 
(GP = 78.31%), 3b renal cancer CAKI-1 (GP = 81.13%). 
Compound 5a revealed the lowest cell growth promotion 
against ovarian cancer OVCAR-4 (GP = 83.44%), pros-
tate cancer PC-3 (GP = 91.32%), and breast cancer MDA-
MB-231/ATCC (GP = 88.39%). Additionally, compound 
5b showed the lowest cell growth promotion against 
colon cancer HCT-116 cell line (GP = 95.84%) (Table 1).

Antimicrobial evaluation
Most of the novel compounds were estimated for their in 
vitro anti-bacterial efficacy against some species of Gram 
(− ve) bacteria, namely, Escherichia coli, Klebsiella pneu‑
monia, and  Pseudomonas aeruginosa, along with two 
Gram (+ ve) bacteria, namely, Staphylococcus aureus and 
Streptococcus mutans. Additionally, their effectiveness 
against the fungus Candida albicans  was assessed. To 
estimate the preliminary anti-bacterial and anti-fungal 
potencies, the agar-diffusion method was utilized.

Nystatin, Ampicillin, and Gentamicin were also used 
as standard drugs against fungal, Gram + ve bacte-
rial, and Gram − ve bacterial strains, respectively. The 
reports of the antimicrobial results were expressed as 
the average diameter of inhibition zones of the microbial 
growth around the disks in mm values, as accomplished 
in Table 2. The optimization of antimicrobial evaluation 
was performed utilizing a statistical experimental design 
[61–63].

As depicted in Table 2 and in Figs. 3, 4, 5, compound 
4a showed some activities against the gram negative bac-
terial strain,  Escherichia coli (ATCC:10,536) (inhibition 
zone 11.6 ± 0.6 mm( compared to Gentamicin (inhibi-
tion zone 27 ± 1.0 mm), while  revealing inhibition zone 
against the gram positive strain, Staphylococcus aureus 
(ATCC:13,565) (inhibition zone 11.3 ± 0.6 mm),  when 
compared to Ampicillin (inhibition zone 21.7 ± 0.6 
mm). Its worthy to note that no apparent potency was 
observed for compound 4a against  the fungal strain 
Candida albicans (ATCC:10,231) compared to Nysta-
tin (inhibition zone 21 ± 1.0 mm). On the other hand 
compound 3c showed fungal zone of inhibition with 
the value 13.3 ± 0.6 mm against  the Candida albicans 
(ATCC:10,231) compared to Nystatin (inhibition zone 
21 ± 1.0 mm). Thus, 3c is considered as the most potent 
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Table 1 Anti‑tumor properties of the compounds at a dose of 10 μM using human tumor cell lines

Panel/Cell line 3a 3b 4a 4b 5a 5b 7b

Leukemia

CCRF‑CEM 109.88 100.29 116.66 106.84 96.89 116.52 116.17

HL‑60(TB) 112.07 90.58 114.70 114.78 109.12 93.23 78.31

K‑562 104.72 91.75 98.62 97.56 92.02 95.72 88.84

MOLT‑4 108.90 99.31 98.73 103.63 107.38 99.53 95.99

RPMI‑8226 104.02 105.57 100.08 113.68 92.47 99.37 107.97

SR 117.75 98.34 105.41 87.88 90.10 106.56 103.56

Non-small cell lung cancer 

A549/ATCC 98.66 98.81 105.02 105.10 105.57 105.50 103.59

EKVX 77.46 80.79 90.29 90.00 80.80 80.41 92.73

HOP‑62 85.52 93.97 95.69 98.70 96.56 97.94 102.04

HOP‑92 122.02 129.24 89.70 117.23 96.50 91.06 118.08

NCI‑H226 93.04 94.32 94.39 98.66 86.85 95.95 96.79

NCI‑H23 103.76 94.93 96.92 102.47 92.18 98.55 105.42

NCI‑H322M 101.09 98.60 102.91 96.07 99.63 97.47 104.87

NCI‑H460 103.67 103.16 103.61 102.31 100.92 100.37 102.22

NCI‑H522 98.70 86.83 98.57 93.50 85.01 93.04 94.94

Colon cancer

COLO 205 109.77 117.05 107.26 108.68 104.06 109.34 109.93

HCC‑2998 108.67 120.78 110.46 108.19 103.14 110.53 111.51

HCT‑116 99.60 100.28 99.11 101.85 98.89 95.84 102.90

HCT‑15 96.34 97.17 97.79 99.61 101.80 100.44 98.79

HT29 108.29 116.29 105.23 102.68 104.11 109.46 112.65

KM12 106.63 106.43 109.05 104.54 102.17 101.19 104.16

SW‑620 105.70 100.74 101.32 106.70 99.76 98.98 105.00

CNS cancer

SF‑268 96.54 98.96 101.29 103.77 95.21 96.49 99.36

SF‑295 90.83 86.82 93.19 93.07 86.80 90.82 97.23

SF‑539 101.08 92.86 97.24 97.97 89.91 95.16 92.58

SNB‑19 98.77 95.13 95.81 95.83 90.09 97.19 95.53

SNB‑75 74.76 77.59 77.71 78.73 75.30 77.45 81.18

U251 103.95 99.30 104.64 107.53 97.45 107.68 99.84

Melanoma

LOX IMVI 95.77 94.66 98.93 97.31 89.29 97.71 94.31

MALME‑3 M 97.44 84.52 101.06 100.69 93.92 91.01 102.01

M14 102.37 101.94 104.95 98.91 101.13 100.91 99.60

MDA‑MB‑435 100.60 101.75 98.30 98.72 99.57 100.87 99.48

SK‑MEL‑2 128.41 102.83 112.24 105.73 116.13 110.65 111.32

SK‑MEL‑28 99.39 101.04 103.77 101.19 96.01 95.97 97.92

SK‑MEL‑5 72.98 106.78 92.87 95.62 85.03 95.30 87.34

UACC‑257 99.97 103.60 102.15 103.01 111.28 105.19 105.56

UACC‑62 103.11 84.71 94.57 94.30 80.87 87.29 94.38

Ovarian cancer

IGROV1 103.94 97.31 110.12 106.47 100.49 89.71 107.05

OVCAR‑3 114.38 110.36 106.76 112.06 105.84 106.71 108.62

OVCAR‑4 95.65 91.13 86.36 90.71 83.44 85.99 94.63

OVCAR‑5 104.49 100.03 103.05 100.77 96.50 91.37 99.69

OVCAR‑8 104.22 101.58 104.63 106.02 103.10 101.58 105.11

NCI/ADR‑RES 100.60 99.63 103.92 102.27 99.25 101.70 100.28
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compound with antifungal activity among the other 
tested compounds. Compound 5a indicated inhibition 
zone against the gram-positive strain, Staphylococcus 
aureus (ATCC:13565) (inhibition zone 11.6 ± 0.6 mm).

Compound 3a and 5a revealed fungal zone of inhibi-
tion with the value 12.3 ± 0.6 mm, and 9.6 ± 0.6, respec-
tively against  the Candida albicans (ATCC:10231) 

compared to Nystatin. Compound 7b is considered is 
the only compound among the examined ones which 
revealed potency against the Pseudomonas aeruginosa 
(ATCC:27853) with inhibition zone value of 11.3 ± 0.6 
respectively.

Against gram positive bacteria Staphylococcus aureus 
(ATCC:13565) compound 4d indicated bacterial zone of 

Table 1 (continued)

Panel/Cell line 3a 3b 4a 4b 5a 5b 7b

SK‑OV‑3 103.08 91.32 107.02 113.01 93.62 98.21 101.24

Renal cancer

786‑0 103.15 108.31 110.30 102.34 100.37 101.72 99.30

A498 101.04 110.05 115.02 105.58 103.47 112.37 98.23

ACHN 99.94 98.49 102.14 101.60 91.57 101.12 102.62

CAKI‑1 88.61 81.13 92.13 89.24 83.53 86.60 87.08

RXF 393 118.89 105.80 102.59 101.71 90.00 105.38 104.55

SN12C 101.86 96.10 96.05 98.77 85.63 95.34 100.37

TK‑10 101.71 134.03 104.72 93.71 107.73 125.56 104.11

UO‑31 92.40 81.52 85.43 89.82 81.59 89.98 92.55

Prostate cancer

PC‑3 103.05 112.09 106.53 113.83 91.32 107.65 115.88

DU‑145 106.44 107.83 109.84 113.40 109.35 105.36 108.61

Breast cancer

MCF7 84.02 87.47 93.45 91.47 90.37 86.42 97.13

MDA‑MB‑231/ATCC 98.98 90.59 100.13 93.08 88.39 92.68 104.60

HS 578T 99.34 97.30 107.63 113.10 93.30 99.61 111.99

BT‑549 104.79 106.72 110.89 109.75 99.59 98.36 105.65

T‑47D 94.87 92.07 93.59 98.98 91.58 95.54 99.03

Table 2 Determination of the antimicrobial activity of compounds (3a, 3b, 3c, 4a, 4b and 4c) against different antibacterial and 
fungal strains

*NA: No activity; **NT: Not tested

Microorganism Sample Standard antibiotic

3a 3b 3c 4a 4b 4c

Gram negative bacteria Gentamicin

Escherichia coli
(ATCC:10536)

NA* NA NA 11.6 ± 
0.6

NT NA 27 ± 1.0

Klebsiella pneumonia
(ATCC:10031)

NA NT** NA NT NT NA 25 ± 1.0

Pseudomonas aeruginosa
(ATCC:27853)

NA NT NA NT NT NA 27.3 ± 0.6

Gram positive bacteria Ampicillin

Staphylococcus aureus
(ATCC:13565)

NA NA NA 11.3 ± 
0.6

NA NA 21.7 ± 0.6

Streptococcus mutans
(ATCC:25175)

NA NA NA NA NA NA 30 ± 1.0

Fungi Nystatin

Candida albicans
(ATCC:10231)

12.3 ± 
0.6

NA 13.3 ± 0.6 NA NA NA 21 ± 1.0
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inhibition with the value of 9.3 ± 0.6 mm. The activity of 
the 5b against the gram-positive bacteria Staphylococcus 
aureus, and Streptococcus mutans with inhibition zone 
value of 9.6 ± 0.6, and 10.3 ± 0.6 respectively (Table  3). 
All the tested compounds revealed no apparent potency 
against Klebsiella pneumonia (ATCC:10031). 

SARS‑CoV‑2
The novel synthesized compound 3a was evaluated for its 
anti-viral potency against SARS CoV-2 virus to determine 

the half-maximal cytotoxic concentration  (CC50) and 
inhibitory concentration 50  (IC50) (Fig.  6). The antiviral 
activity of the compound is identified using the MTT 
assay. The results revealed that compound 3a has high 
and potent antiviral activity against SARS-CoV-2.

The inhibition concentration (IC50) was calculated 
from the slope on graph pad prism for compound 3a 
and according to that value, the promising compound 
had low value can inhibit propagation of virus in the 
same time with low toxicity on the cell as compound 3a 
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Fig. 3 The antibacterial activities of compounds 3a-c, 4a-d, 5a,b, and 7b as compared with Gentamicin as standard antibiotic against Gram (–ve) 
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had IC50 = 2.378 µM and CC50 = 577.2 µM with safety 
index = 250. Thus, compound 3a showed potent antiviral 
activity against SARS-CoV-2 with  IC50 = 2.378 µM that 
is comparable to the activity of the antiviral drug remde-
sivir  (IC50 = 10.11 µM) (Fig.  7). Compound 3a revealed 
a selectivity index (SI =  (CC50/IC50) = 250) that is much 
higher than the selectivity index of remdesivir as positive 
control (SI = 41.07).

Cytotoxicity assay of compound 3a in Vero E6 cells is 
shown in Fig. 3. The determination of the cytotoxicity of 

compound 3a and remdesivir based on the dose response 
was performed utilizing MTT assay. The calculations 
of the 50% cytotoxic concentration  (CC50) for the com-
pound is identified via non-linear regression analysis of 
GraphPad Prism software (version 5.01). The inhibitory 
concentration 50%  (IC50) values were also calculated uti-
lizing non-linear regression analysis of GraphPad Prism 
software through plotting log inhibitor versus the nor-
malized response known as the variable slope.
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Fig. 5 The antifungal activities of compounds 3a-c, 4a-d, 5a,b, and 7b as compared with Nystatin as standard antibiotics against Candida albicans

Table 3 Determination of the antimicrobial activity of compounds (4d, 5a, 5b, and 7b) against different antibacterial and fungal 
strains

Microorganism Sample Standard antibiotic

4d 5a 5b 7b

Gram negative bacteria Gentamicin

Escherichia coli
(ATCC:10536)

NT NA NA NA 27 ± 1.0

Klebsiella pneumonia
(ATCC:10031)

NT NA NA NA 25 ± 1.0

Pseudomonas aeruginosa
(ATCC:27853)

NT NA NT 11.3 ± 0.6 27.3 ± 0.6

Gram positive bacteria Ampicillin

Staphylococcus aureus
(ATCC:13565)

9.3 ± 
0.6

11.6 ± 
0.6

9.6 ± 0.6 NA 21.7 ± 0.6

Streptococcus mutans
(ATCC:25175)

NA NA 10.3 ± 0.6 NA 30 ± 1.0

Fungi Nystatin

Candida albicans
(ATCC:10231)

NA 9.6 ± 
0.6

NA NA 21 ± 1.0
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Conclusion
In conclusion, the synthesis of triazine sulfonamides and 
its analogues were achieved starting from sulfaguani-
dine derivatives. Our synthetic approach is expected to 
contribute in the provision of a wide range of triazine 
sulfonamide analogs starting from the crucial intermedi-
ate N-cyanodithioiminocarbonate. The insertion of sev-
eral amines or aryl groups yielded the novel substituted 
triazine sulfonamides. The in  vitro anti-proliferative 
activities, the antimicrobial activities and the antiviral 
activity against SARS-CoV-2 virus were evaluated. Com-
pounds 4a, 4d & 5b  showed some activities against the 
gram (–ve) and gram (+ ve) bacterial strains compared 
to Gentamicin and Ampicillin. Compounds 3a, 3c and 
5a displayed potency against  the fungal strain Candida 

albicans compared to Nystatin as standard anti-fungal 
drug. The anti-proliferative efficacy of the novel tria-
zine sulfonamides was also estimated on NCI 60 cancer 
cell lines. Compound 3a is considered to be the most 
potent derivative among the estimated compounds in 
which it revealed remarkably lowest cell growth promo-
tion against melanoma SK-MEL-5, CNS cancer SNB-75, 
and non-small cell lung cancer EKVX cell line. Addi-
tionally, the anti-viral activity against SARS CoV-2 virus 
was performed utilizing the MTT cytotoxicity assay. 
Compound 3a exhibited antiviral potency against SARS-
CoV-2 with  IC50 = 2.378 µM as compared to the antiviral 
drug remdesivir  (IC50 = 10.11 µM). This study showed 
promising results for developing these novel structures. 
Further studies concerning synthesizing other triazine 
sulfonamide analogs and the evaluation of their biologi-
cal potency are currently in progress.

Experimental
Methods
On the pre-coated silica gel 60 F245 aluminum plates, 
TLC was utilized for monitoring the reaction’s develop-
ment and the UV light was used for visualization. The 
Stuart SMP30 equipment was used to determine the 
melting point that was uncorrected. In the faculty of 
Pharmacy at the Drug Discovery, Research & Develop-
ment Centre at Ain Shams University and in the National 
Research Center, Egypt, the spectroscopic analyses of the 
compounds were carried out. On Bruker Fourier 400 and 
500 (operating at 400 MHz and 500 MHz, respectively) 
at 300 K, the NMR spectra were measured. The National 
Cancer Institute in Bethesda, Maryland, United States, 
conducted the anticancer screening. Antimicrobial eval-
uation carried out at the Cairo University’s Faculty of 
Science’s Microbiology Unit in the Biochemistry Central 
Lab, Cairo, Egypt. The Centre of Scientific Excellence 
for Influenza Viruses, National Research Centre (NRC), 
Dokki, Cairo 12622, Egypt, conducted the antiviral assays 
for the SARS-CoV-2 virus.

Synthesis
Synthesis of N‑[3,4‑dihydro‑4‑amino‑6‑(methylthiol)
triazin‑2‑yl]benzenesulfonamide derivatives 3
General procedure I: A mixture of substituted sulfa-
guanidine 1 (0.01  mol) with N-cyanodithioiminocar-
bonate 2 (0.01  mol) in dry dioxane (20  mL) containing 
potassium hydroxide (0.015  mol) was refluxed for 3  h. 
The reaction mixture was poured into ice-water, filtered, 
washed thoroughly with water, dried and crystallized 
from ethanol to obtain the desired product.

Fig. 6 Graph of inhibitory concentration 50  (IC50) of tested 
compound 3a: Antiviral activity against SARS‑CoV‑2

Fig. 7 Graph of inhibitory concentration 50  (IC50) of remdesivir 
as positive control. Antiviral activity against SARS‑CoV‑2
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Synthesis of  N‑[3,4‑dihydro‑4‑amino‑6‑(methylthiol)tria‑
zin‑2‑yl]benzenesulfonamide (3a) According to general 
procedure I, compound 2 reacted with benzenesulfonyl-
guanidine (1a) to afford compound 3a as an off white solid 
(87%); mp 247–249 °C; IR (KBr,  cm−1): υ 3261, 3202 (NH), 
3065 (Ar–CH), 2931, 2813 (alph. CH), 1555 (C═C), 1358, 
1141  (SO2); 1H NMR (400  MHz, DMSO-d6): δ 2.29 (s, 
3H,  CH3), 7.35 (s, 2H,  NH2), 7.54–7.64 (m, 3H, Ar–H), 
7.96–7.98 (d, 2H, Ar–H), 11.83 (s, 1H, NH); 13C-NMR 
(400 MHz, DMSO-d6) δ (ppm): 12.53,127.75, 128.75, 
132.79, 140.85, 159.76, 163.42, 180.34. Anal. Calcd. For. 
 C10H11N5O2S2 (297.36): C, 40.39; H, 3.73; N, 23.55; S, 
21.57. Found: C, 40.38; H, 3.72; N, 23.55; S, 21.56.

Synthesis of N‑[3,4‑dihydro‑4‑amino‑6‑(methylthiol)tri‑
azin‑2‑yl]‑4‑chlorobenzenesulfonamide (3b) According 
to general procedure I, compound 2 reacted with p-chlo-
robenzenesulfonylguanidine (1b) to afford compound 
3b as an off white solid (84%); mp 283–285 °C; IR (KBr, 
 cm−1): υ 3455, 3260, 3201 (NH), 2980 (alph. CH), 1555 
(C═C), 1359, 1141  (SO2); 1H NMR (400 MHz, DMSO-
d6): δ 2.49 (s, 3H,  CH3), 7.41 (s, 1H, NH), 7.60–7.62 (d, 
2H, Ar–H), 7.74 (s, 1H, NH), 7.94–7.97 (d, 2H, Ar–H), 
11.79 (s, 1H, NH); 13C-NMR (400 MHz, DMSO- d6) δ 
(ppm): 12.50, 128.70, 129.70, 137.33, 140.05. Anal. Calcd. 
For.  C10H10ClN5O2S2 (331.8): C, 36.20; H, 3.04; Cl, 10.68; 
N, 21.11; S, 19.33. Found: C, 36.20; H, 3.03; Cl, 10.67; N, 
21.11; S, 19.32.

Synthesis of N‑[3,4‑dihydro‑4‑amino‑6‑(methylthiol)tria‑
zin‑2‑yl]‑4‑acetamidobenzenesulfonamide (3c) Accord-
ing to general procedure I, compound 2 reacted with 
p-acetamidobenzenesulfonylguanidine (1c) to afford 
compound 3c as a brown solid (40%); mp ˃ 340 °C; 1H NMR 
(400 MHz, DMSO-d6): δ 1H NMR (400 MHz, DMSO-d6): 
δ 2.41 (s, 3H,  CH3), 2.49 (s, 3H,  CH3), 7.00 (s, 1H, NH), 
7.26 (s, 1H,  NH2), 7.27–7.29 (d, 2H, Ar–H), 7.51–7.53 
(d, 2H, Ar–H), 7.91 (s, 1H, NH), 8.68 (s, 1H, NH); Anal. 
Calcd. For.  C12H14N6O3S2 (354.41): C, 40.67; H, 3.98; N, 
23.71; S, 18.09. Found: C, 40.67; H, 3.97; N, 23.70; S, 18.08.

Synthesis of substituted 
N‑[3,4‑dihydro‑4‑amino‑6‑(methylthiol)triazin‑2‑yl]
benzenesulfonamides 4, 5, and 7
General procedure II: A mixture of N-[3,4-dihydro-4-
amino-6-(methylthiol)triazin-2-yl]benzenesulfonamide 
(0.01 mol) with various secondary amines (0.02 mol), or 
anilines 7 (0.01 mol) in dry dioxane (20 mL) containing 
potassium carbonate (0.015  mol) was refluxed for 3  h. 
The reaction mixture was poured into ice-water, filtered, 
washed thoroughly with water, dried and crystallized 
from ethanol to obtain the desired product.

Synthesis of  N‑[3,4‑dihydro‑4‑amino‑6‑(piperidin‑1‑yl)
triazin‑2‑yl]benzenesulfonamide (4a) According to gen-
eral procedure II, compound 3 reacted with piperidine to 
afford compound 5a as a buff solid (62%); mp 319–320 °C; 
1H NMR (400 MHz, DMSO-d6): δ 1.30 (m, 2H,  CH2), 2.49 
(m, 4H,  CH2), 3.62 (m, 4H,  CH2), 6.13 (s, 2H,  NH2), 7.31–
7.35 (m, 1H, Ar–H), 7.37–7.44 (m, 2H, Ar–H), 7.76–7.78 
(m, 1H, Ar–H), 7.86–7.89 (d, 1H, Ar–H), 9.53 (s, 1H, NH); 
Anal. Calcd. For.  C14H18N6O2S (334.4): C, 50.28; H, 5.43; 
N, 25.13; S, 9.59. Found: C, 50.27; H, 5.43; N, 25.12; S, 9.58.

Synthesis of  N‑[3,4‑dihydro‑4‑amino‑6‑morpholinotria‑
zin‑2‑yl]benzenesulfonamide (4b) According to general 
procedure II, compound 3a reacted with morpholine to 
afford compound 4b as an off white solid (73%); mp 360–
363 °C; IR (KBr,  cm−1): υ 2985(Ar–CH), 2972, 2907, 2873, 
2850 (alph. CH), 1550 (C═C), 1357, 1135  (SO2); 1H NMR 
(400 MHz, DMSO-d6): δ 2.62 (m, 2H,  CH2), 3.11 (m, 2H, 
 CH2), 3.47 (m, 4H,  CH2), 5.67 (s, 1H, NH), 6.09 (s, 2H, 
 NH2), 7.31 (m, 3H, Ar–H), 7.70 (m, 1H, Ar–H), 7.76 (m, 
1H, Ar–H); Anal. Calcd. For.  C13H16N6O3S (336.37): C, 
46.42; H, 4.79; N, 24.98; S, 9.53. Found: C, 46.42; H, 4.79; 
N, 24.97; S, 9.52.

Synthesis of  N‑[3,4‑dihydro‑4‑amino‑6‑morpholinotria‑
zin‑2‑yl]‑4‑chlorobenzenesulfonamide (4c) According to 
general procedure II, compound 3b reacted with morpho-
line to afford compound 4c as off white solid (81%); mp 
342–343 °C; Anal. Calcd. For.  C13H15ClN6O3S (370.81): C, 
42.11; H, 4.08; Cl, 9.56; N, 22.66; S, 8.65. Found: C, 42.11; 
H, 4.07; Cl, 9.55; N, 22.66; S, 8.64.

Synthesis of  N‑[3,4‑dihydro‑4‑amino‑6‑(4‑methylpip‑
erazin‑1‑yl)‑triazin‑2‑yl]‑4‑chlorobenzenesulfonamide 
(4d) According to general procedure II, compound 3b 
reacted with 4-methylpiperazine to afford compound 4d 
as a buff solid (51%); mp 270–273  °C; Anal. Calcd. For. 
 C14H18ClN7O2S (383.86): C, 43.81; H, 4.73; Cl, 9.24; N, 
25.54; S, 8.35. Found: C, 43.81; H, 4.73; Cl, 9.23; N, 25.53; 
S, 8.34.

Synthesis of  N‑[3,4‑dihydro‑4‑amino‑6‑(pyrrolidin‑1‑yl)
triazin‑2‑yl]benzenesulfonamide (5a) According to gen-
eral procedure II, compound 3a reacted with pyrrolidine 
to afford compound 5a as buff crystals (81%); mp 317 °C; 
1H NMR (400  MHz, DMSO-d6): δ 1.76–1.77 (m, 4H, 
 CH2); 3.20–3.23 (m, 2H,  CH2), 3.32–3.36 (m, 2H,  CH2), 
6.82 (s, 2H,  NH2), 7.43–7.50 (m, 2H, Ar–H), 7.84–7.87 (d, 
2H, Ar–H), 7.97–7.99 (d, 1H, Ar–H), 11.19 (s, 1H, NH); 
13C-NMR (400 MHz, DMSO- d6) δ (ppm): 12.87, 24.95, 
25.03, 46.80, 46.97, 127.66, 128.13, 129.11, 131.26, 144.42. 
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Anal. Calcd. For.  C13H16N6O2S (320.37): C, 48.74; H, 5.03; 
N, 26.23; S, 10.01. Found: C, 48.74; H, 5.02; N, 26.22; S, 
10.00.

Synthesis of  N‑[3,4‑dihydro‑4‑amino‑6‑(pyrrolidin‑1‑yl)
triazin‑2‑yl]‑4‑chlorobenzenesulfonamide (5b) Accord-
ing to general procedure II, compound 3b reacted with 
pyrrolidine to afford compound 5b as a buff solid (78%); 
mp 237 °C; IR (KBr,  cm−1): υ 3346, 3209 (NH), 2971(Ar–
CH), 2873 (alph. CH), 1541 (C═C), 1390, 1132  (SO2); 
1H NMR (400  MHz, DMSO-d6): δ 1.76 (m, 2H,  CH2); 
1.82–1.85 (m, 2H, CH2), 3.13–3.21 (m, 4H,  CH2), 5.79 (s, 
1H, NH), 6.17 (s, 1H,  NH2), 6.61 (s, 1H, NH), 7.34–7.40 
(m, 2H, Ar–H), 7.49–7.52 (d, 1H, Ar–H), 7.77–7.80 (d, 
1H, Ar–H); Anal. Calcd. For.  C13H15ClN6O2S (354.82): C, 
44.01; H, 4.26; Cl, 9.99; N, 23.69; S, 9.04. Found: C, 44.00; 
H, 4.25; Cl, 9.97; N, 23.67; S, 9.01.

Synthesis of  N‑[3,4‑dihydro‑4‑amino‑6‑(N‑(4‑chlorophe‑
nyl))triazin‑2‑yl]benzenesulfonamide (7a) According to 
general procedure II, compound 3a reacted with 4-chlo-
roaniline (6) to afford compound 7a as a buff solid (68%); 
1H NMR (400 MHz, DMSO-d6): δ δ 6.17 (s, 1H, NH), 6.57 
(s, 1H,  NH2), 7.34–7.39 (m, 4H, Ar–H), 7.49–7.51 (d, 2H, 
Ar–H), 7.77–7.80 (d, 3H, Ar–H), 8.54 (s, 1H, NH); Anal. 
Calcd. For.  C15H13ClN6O2S (376.82): C, 47.81; H, 3.48; Cl, 
9.41; N, 22.30; S, 8.51. Found: C, 47.81; H, 3.48; Cl, 9.40; 
N, 22.30; S, 8.50.

Synthesis of N‑[3,4‑dihydro‑4‑amino‑6‑ (N‑(4‑chlo‑
rophenyl)) triazin‑2‑yl]‑4‑chlorobenzenesulfonamide 
(7b) According to general procedure II, compound 3b 
reacted with 4-chloroaniline (6) to afford compound 7b 
as a buff solid (71%); mp ˃ 350 °C; IR (KBr,  cm−1): υ 3160 
(NH), 2934 (Ar–CH), 2619 (alph. CH), 1618 (C═C), 
1364,1388, 1130  (SO2); 1H NMR (400 MHz, DMSO-d6): 
δ 6.17 (s, 1H, NH), 6.57 (s, 1H, NH), 7.74 (s, 1H, NH), 
7.34–7.39 (m, 4H, Ar–H), 7.49–7.51 (d, 2H, Ar–H), 7.77–
7.80 (d, 2H, Ar–H), 8.54 (s, 1H,  NH2); Anal. Calcd. For. 
 C15H12Cl2N6O2S (411.27): C, 43.81; H, 2.94; Cl, 17.24; N, 
20.43; S, 7.80. Found: C, 43.80; H, 2.94; Cl, 17.23; N, 20.42; 
S, 7.78.

In vitro anti-proliferative activity
Primary anticancer assays were carried out in accord-
ance with NCI procedures [64–68]. The compounds were 
applied at a single concentration, and the cell culture 
was then incubated for 48 h. Sulforhodamine B (SRB), a 
protein-binding dye, was used to detect the endpoints. 
The compound’s effects were displayed as a percentage 
growth (GP%) of the treated cells relative to the untreated 
cells in the control. The range of growth (%) displayed 
the maximum and lowest growth arising from the initial 

single high dosage  (10−5M) sensitivity against the differ-
ent cancer cell lines.

Antimicrobial activity
Using the agar well diffusion method, the synthesized 
compounds were separately evaluated against a panel of 
Gram (+ ve) and Gram (−ve) bacterial pathogens and the 
fungi [69]. The compounds were evaluated against fun-
gal and bacterial strains at a concentration of 15 mg/mL. 
In sterilized saline equivalent to 0.5 McFarland standard 
solution (1.5 ×  105 cfu/ml), the microbial suspension was 
prepared, then the turbidity of the medium was adjusted 
to the optical density (OD) = 0.13 at 625  nm utilizing a 
spectrophotometer. A sterile cotton swab should ide-
ally be dipped into the adjusted suspension within fif-
teen minutes of adjusting the turbidity of the inoculum 
suspension, flooded over the dried agar surface, and 
then allowed to dry for another 15  min. Using a sterile 
borer, 6 mm-diameter wells were prepared in the solidi-
fied media. Using a micropipette, 100 μL of the tested 
compound solution was added to each well. At 37  °C, 
the plates were then incubated. Measuring the zone of 
inhibition (mm) was carried out after 24 h incubation at 
30  °C for bacterial plates and 48  h for fugal plates. The 
results were recorded for each tested substance as % 
inhibition ± SD, and the experiment was run in tripli-
cate. The inhibition zone s’ diameters were measured in 
millimeters.

Cytotoxicity assay
SARS‑CoV2
MTT cytotoxicity assay To identify the half maximum 
cytotoxic concentration  (CC50), stock solutions of the 
tested substances were prepared in DMSO (10% in  ddH2O) 
and subsequently diluted to the employed concentrations 
using DMEM. By slightly altering the 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tech-
nique, the cytotoxic activity of the extracts was examined 
in VERO-E6 cells. Briefly, the cells were seeded in 96-well 
plates at a density of 3 ×  105 cells per ml (100 µl /well) and 
then incubated for 24 h at 37 °C in 5% carbon dioxide.

After 24 h, the examined compounds were treated in 
triplicates to cells in a range of doses. The supernatant 
was removed twenty-four hours in advance, and cell 
mono-layers were then washed three times with ster-
ile 1 × PBS before being incubated for four hours at 37 
degrees Celsius with MTT solution (20 µl of a 5 mg/ml 
stock solution). The medium was then aspirated.

In each well, 200 µl of acidified isopropyl alcohol (0.04 
M hydrochloric acid in isopropyl alcohol = 0.073 ml 
hydrochloric acid in 50 ml isopropyl alcohol) was used 
to dissolve the produced formazan crystals. Using a 
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multiwall-plate reader, the absorbance of formazan solu-
tions was calculated at max λ 540 nm and 620 nm. Using 
a plot of cytotoxicity versus sample concentration, the 
concentration  (CC50) that indicated 50% cytotoxicity was 
determined.

Estimation of  the  inhibitory Concentration 50% (IC 
50) 2.4 ×  104 Vero E6 cells were seeded onto tissue cul-
ture plates (96-well), and they were then exposed to 5% 
carbon dioxide at 37°C for the duration of the full night.

The cell monolayers were then treated with hCoV-19/
Egypt/NRC-03/2020 (Accession No. on GSAID/ EPI ISL 
430820) and allowed to remain there for an additional 
hour at ambient temperature. The cell monolayers were 
then covered with DMEM (100 μl) with various test drug 
doses.

The cells were then stained with 0.1% crystal violet in 
distilled water at ambient temperature for fifteen min-
utes, fixed with 100 μl polyoxymethylene (4%) for twenty 
minutes, and kept in a 5% carbon dioxide incubator at 
37 °C for the ensuing 72 h. After being fixed with 100 μl 
polyoxymethylene (4%) for 20 min, the cells were stained 
with 0.1% crystal violet in  DH2O at room temperature for 
15 min. The crystal violet dye was then dissolved in 100 
μl of methanol in each well (Anthos Labtec Instruments, 
Heerhugowaard, Netherlands) before the optical density 
of the color was determined at 570 nm using an Anthos 
Zenyth 200rt-plate reader. The amount of a chemical 
required to lower the virally-induced cytopathic effect 
(CPE) in contrast to virus control by 50% is known as the 
IC 50.
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