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Abstract
A multivariate spectrophotometric method is a potential approach that enables discrimination of spectra 
of components in complex matrices (e.g., pharmaceutical formulation) serving as a substitution method for 
chromatography. Four green smart multivariate spectrophotometric models were proposed and validated, 
including principal component regression (PCR), partial least-squares (PLS), multivariate curve resolution-alternating 
least squares (MCR-ALS), and artificial neural networks (ANN). The developed chemometric models were compared 
to resolve highly overlapping spectra of Paracetamol (PARA), Chlorpheniramine maleate (CPM), Caffeine (CAF), and 
Ascorbic acid (ASC). The four multivariate calibration models were assessed via recoveries percent, and root mean 
square error of prediction. Hence, the proposed models were efficiently applied with no need for any preliminary 
separation step. The models were utilized to analyze the studied components in their combined pharmaceutical 
formulation (Grippostad® C capsules). Analytical GREEnness Metric Approach (AGREE) and eco-scale tools were 
applied to assess the greenness of the established models and found to be 0.77 and 85, respectively. Moreover, 
the proposed models have been compared to official ones showing no considerable variations in accuracy and 
precision. Therefore, these models can be highly advantageous for conducting standard pharmaceutical analysis of 
the substances researched within product testing laboratories.
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Introduction
Quality control analysis within the pharmaceutical indus-
try requires determining several parameters for both raw 
materials and end products. The most utilized analytical 
technique for quality control analysis of pharmaceutical 
products is high-pressure liquid chromatography (HPLC) 
[1]. However, an HPLC technique is costly, requires sig-
nificant labor, and consumes time, whilst also generating 
hazardous waste materials. This gets an interest in devel-
oping simple, green, and valid alternative techniques that 
produce precise and accurate outcomes with efficiency 
and minimal human intervention [2]. Chemometrics is 
a well-known chemical discipline that uses mathemat-
ics, statistics, and formal logic for extracting meaning-
ful and important qualitative or quantitative information 
from given chemical data [3]. Recently, chemometric 
models like principal component regression (PCR), par-
tial least squares (PLS), multivariate curve resolution 
alternating least squares (MCR-ALS), and artificial neu-
ral networks (ANN) have generated considerable inter-
est in the detection of multi-component preparations 
[4–8]. PCR and PLS are the most applied multivariate 
calibration approaches in chemometrics. These models 
enable the resolution of overlapped spectra, reduction 
of interference between signals, and minimization of 
noise [9]. Newer advanced models were implemented for 
multivariate calibration in recent years, one of which is 
MCR-ALS. ALS was then applied, and several constraints 
were tried to limit the possible solutions and improve 
the quantification of compounds’ concentration profiles 
[10, 11]. ANNs represent a sophisticated model capable 
of emulating several cognitive processes of the human 
brain through diverse algorithms. It is deemed superior 
to other conventional multivariate models to model vari-
ables’ linear and nonlinear relationships [11, 12]. Green 
chemistry has become the main driving force in both 

laboratory and industry settings in promoting sustain-
ability. The twelve principles of Green Analytical Chem-
istry (GAC) developed by Anatas provide guidance for 
those interested in pursuing this approach [13]. Chemists 
from various fields, including organic, analytical chem-
istry, and chemical engineering provide a framework for 
implementing measures to increase the eco-friendliness 
of chemical materials and processes [14]. The bulk of 
endeavors to create more environmentally friendly chem-
ical processes concentrate on employing cleaner, less 
hazardous, gentler solvents, or removing solvents alto-
gether, also minimizing chemical reagents. Other efforts 
involve preserving energy through the use of underiva-
tized samples and employing raw materials derived from 
renewable resources [15]. Paracetamol (PARA), N-acetyl-
p-aminophenol, or acetaminophen is commonly used 
as an antipyretic and analgesic drug. It is a painkiller 
that can alleviate symptoms of cold including headache, 
earache, and joint pain. Additionally, it is effective in 
lowering a high body temperature [16, 17] (Fig. 1). Chlor-
pheniramine maleate (CPM), (3RS)-3-(4-Chlorophenyl)-
N, N-dimethyl-3-(pyridine-2-yl) propane-1-amine 
hydrogen (Z)- butenedioate, is an antihistaminic drug 
that is used to treat runny nose, sneezing, and watery eyes 
caused by the common cold, or the flu [16, 17] (Fig. 1). 
Caffeine (CAF), 1,3,7-Trimethyl-3,7-dihydro-1 H-purine-
2,6-dione, is a CNS stimulant that improves alertness 
and alleviates the malaise that is often associated with 
the common cold [16, 17] (Fig.  1). Ascorbic acid (ASC) 
is an antioxidant substance that supports the immunity 
of the body and helps fight against cold [16]. It possesses 
a positive impact and plays a protective role in curing 
new coronavirus disease [18]. It is chemically designated 
as (5R)-5-[(1S)-1,2-Dihydroxyethyl]-3,4-dihydroxyfuran-
2(5H)-one [17] (Fig.  1). A combination of PARA with 
CPM, CAF, and ASC is used to treat common symptoms 
like headaches, limb pain, rhinitis, and dry cough that 
occur with the common cold [19]. It is also an effective 
treatment for the same symptoms that are associated 
with COVID-19 [20]. Although different chemometric 
assays were reported for the determination of the investi-
gated drugs either in different binary [21–23]or in a qua-
ternary mixture [24] a comprehensive literature review 
uncovered no evaluated chemometric models for resolv-
ing the spectra of the four drugs in their dosage form. 
In addition, these reported techniques did not consider 
the greenness assessment. The present eco-friendly work 
seeks to reduce the use of potentially dangerous materials 
that harm the environment. Hither, AGREE and penalty 
points scoring systems were employed to evaluate the 
greenness of our developed models. AGREE provides a 
thorough environmental assessment of the whole analy-
sis procedure [25]. The eco-scale assessment of the estab-
lished approaches was calculated and deducted from Fig. 1 Chemical structure of the studied drugs
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100 based on penalty points [26]. This research aimed 
to apply green smart multivariate models to concur-
rently quantify PARA, CPM, CAF, and ASC in their dos-
age form and to quantitatively assess the efficiency of the 
established models and compare their performance by 
different statistical tests. The study was based on UV-Vis 
spectrophotometry as an analytical technique in combi-
nation with a non-linear model (ANN/RBF) and multi-
variate curve resolution.

Experimental
Apparatus and software
All spectrophotometric measurements were done using 
a Shimadzu 1605 UV- spectrophotometer (Kyoto, Japan), 
with 1.00  cm quartz cells at a range of (200–400  nm). 
MATLAB® 8.3.0.532 (R2014a), PLS Toolbox (version 
2.1), MCR-ALS Toolbox (free software available at http://
www.mcrals.info), and the Neural Network Toolbox™ 
employed in MATLAB® were used in data analysis.

Chemicals and materials
PARA, CPM, CAF, and ASC powders were kindly sup-
plied by the Egyptian Drug Authority, (EDA), Egypt. 
Their purity was tested by the official British Pharmaco-
peial method [17] for PARA and ASC and found to be 
100.04 ± 1.26 and 100.04 ± 1.36, respectively, while by the 
USP official method [27]for CPM and CAF and found 
to be 100.00 ± 1.19 and 99.69 ± 1.73. Grippostad® C cap-
sules (batch no. G52165) were manufactured by STADA, 
Germany claimed to contain 200.00 mg PARA, 2.50 mg 
CPM, 25.00  mg CAF, and 150.00  mg ASC per capsule. 
Methanol was purchased from Sigma-Aldrich, Germany.

Standard solution
Stock standard solutions of PARA, CPM, CAF, and 
ASC (1.00  mg/mL, each) were prepared by weighing 
100.00  mg of each drug into four separate 100 mL-vol-
umetric flasks, then methanol was added. The solutions 
were sonicated until dissolution and then completed to 
the mark with methanol. Working standard solutions 
with a concentration of 100.00  µg mL− 1 from PARA, 
CPM, CAF, and ASC were prepared from their corre-
sponding stock standard solutions.

Procedure
Spectral characteristics and absorption spectra
The absorption spectra of PARA, CPM, CAF, and ASC 
were measured over the range of 200.0–400.0  nm. The 
spectrum data points ranging from 220.0 to 300.0  nm, 
were selected and transferred for further data analysis on 
MATLAB®.

Construction of calibration and validation sets
A five-level, four-factor calibration design [28] was 
employed to construct the calibration and validation sets. 
Twenty-five mixtures containing various concentrations 
of PARA, CPM, CAF, and ASC in the ranges between 
4.00 and 20.00, 1.00–9.00, 2.50–7.50, and 3.00–15.00 µg 
mL− 1, respectively were applied to design the calibration 
set. In 10 mL volumetric flasks, different aliquots of their 
working solutions were combined and diluted with meth-
anol to the appropriate level. The spectra of the resulting 
solutions were measured within the wavelength range of 
200.0-400.0  nm. Using 1  nm intervals, the spectral data 
in the 220.0–300.0 nm range were imported into MAT-
LAB for data manipulation and calibration model build-
ing. In the calculations, 81 experimental points were 
utilized. The spectral data were mean-centered prior to 
the ANN, PLS, PCR, and MCR-ALS model construction. 
For both the PCR and PLS models, latent variable (LV) 
numbers were optimized using leave-one-out cross-val-
idation. Four LVs that corresponded to the least signifi-
cant error of calibration were optimum in both models. 
In the MCR-ALS model, non-negativity constraints were 
chosen which oblige concentration to be zero or more 
than zero. In this study, we established a feed-forward 
model based on Levenberg–Marquardt backpropagation 
as an ANN training algorithm [8]. To achieve optimal 
network architecture, various elements require refine-
ment: the number of nodes in the hidden layer, the learn-
ing rate, and the number of epochs. Four hidden neurons 
were found to be optimum when using a purelin-purelin 
transfer function. Further parameters like a learning rate 
of 0.1 and 100 epochs were optimized as well. The cali-
bration models of PCR, PLS, MCR-ALS, and ANN were 
constructed, and their predictive power was evaluated 
using a validation set consisting of five samples.

Assay of pharmaceutical dosage form
The contents of ten Grippostab®capsules were accurately 
emptied and weighed. The equivalent weight to one cap-
sule was added into a 100-mL volumetric flask, 25 mL 
methanol was added then the solution was ultrasoni-
cated for 30 min then filtered into a 100-mL measuring 
flask and the volume made up to the mark with metha-
nol. 0.50 mL from the previous solution was transferred 
into a 50-mL volumetric flask and then completed vol-
ume with methanol after spiking with 0.75  µg mL− 1 of 
standard working solution of CPM. The preceding solu-
tion was claimed to have a final concentration of 20.00 µg 
mL− 1 PARA, 1.00 µg mL− 1 CPM, 2.50 µg mL− 1 CAF, and 
15.00 µg mL− 1 ASC.

The aforementioned procedures were utilized to exam-
ine pharmaceutical preparation via the proposed che-
mometric models. Subsequently, the concentrations of 
PARA, CPM, CAF, and ASC were determined.

http://www.mcrals.info
http://www.mcrals.info
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Results and discussion
The use of multivariate analysis as a tool to resolve 
severely overlapping spectroscopic data simultaneously 
including numerous spectroscopic variables at differ-
ent wavelengths instead of using univariate analysis that 
relies on a single value corresponding to a maximum 
absorbance at selected wavelength leads to an increase 
in specificity and sensitivity [29]. Moreover, multivari-
ate calibrations are efficiently used in biodiesel, plant 
extract, and pharmaceutical formulation analysis [30–
33]. Herin, the quantification of our combined drugs in 
Grippostad C® capsules using the univariate spectropho-
tometric method was hindered by the severe spectral 
overlap (Fig. 2). Hence, chemometric models (PCR, PLS, 
MCR-ALS, and ANN) were employed to quantify them 
successively.

Calibration and validation set
The suggested models were optimized and calibrated 
using twenty-five mixtures, Table 1. The samples’ absor-
bance data was scanned between 220.0 and 300.0  nm. 
This range was chosen since all components have sug-
gested absorbance characteristics within this range. To 
remove noise influence within the calibration matrix., 

wavelengths below 220.0 nm were excluded. Wavelengths 
over 300.0  nm were also excluded because they were 
regarded as less informative absorbance data.

PCR and PLS models
PCR and PLS have attracted significant attention in che-
mometrics for multicomponent analysis. Determining 
which method is superior remains a challenging problem 
[34–36]. These models are particularly effective when 
there is only limited information available regarding the 
components. PCR generates components to increase 
the interpretability of data, without taking the response 
variable into consideration. Conversely, PLS involves the 
response variable in its analysis and frequently produces 
models that require fewer components to fit the response 
variable [36]. Hence, PLS produces a more resilient 
model by eliminating interference from absorbance and 
concentration data. To establish the optimal number of 
variables, a cross-validation approach of leaving out one 
sample at a time was applied (Fig. 3). In our investigation, 
four LVs proved to be optimal in both PCR and PLS.

MCR-ALS model
MCR constructs a regression model by evaluating the 
relationship of a variable with other variables [30, 37]. 
This model extends the Beer-Lambert law into the multi-
wavelength domain [38]. MCR separates the spectral 
data background into concentration profile and pure 
spectral-profile matrices. Then the matrix of residuals 
was calculated. MCR-ALS iteratively estimates the con-
centrations of proposed components from spectral pro-
files. Numerous constraints such as unimodality, closure, 
equality, and non-negativity were applied during ALS 
optimization to model concentration and pure spectra 
profile shape. Another advanced constraint was applied 
in MCR-ALS framework to obtain pure resolved profiles 
in arbitrary units without reference quantitative informa-
tion [39]. This issue has been resolved by incorporating 
an inner calibration into the MCR-ALS model through 
correlation constraint [39]. During ALS optimization, the 
order of components could be permuted without chang-
ing the data matrix because of rotational ambiguity [37]. 
In this study, non-negativity constraints with correlation 
constrain were applied to both the concentration and 
spectral profiles. Convergence was commonly reached 
when equal to a value of (0.1%) [40]. The convergence 
was achieved after five iterations. The figures of merit of 
optimization procedures (% lack of fit and variance per-
centages (R2)) were calculated and found to be 1.5625 and 
99.9754 which were reasonable and assisted in improving 
the strength of the developed MCR-ALS model (Fig. 4).

The MCR-ALS model can estimate the spectral pro-
files of drugs, providing a qualitative meaning in its algo-
rithms. The estimated spectra were closely similar to the 

Fig. 2 Absorption spectra of 12.00 µg mL− 1 PARA (—), 1.00 µg mL− 1 CPM 
(….), 2.50 µg mL− 1 CAF(…), and 6.00 µg mL− 1 ASC (— —), using methanol 
as solvent
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original ones (Fig.  5). To calculate the concentration of 
the studied components in the validation set, the related 

Table 1 Concentrations of PARA, ASC, CAF, and CPM in 
the calibration and validation sets for the multivariate 
calibration models
Mix no. Conc. (µg mL− 1)

PARA ASC CAF CPM
1 12.00 9.00 7.50 5.00
2 12.00 6.00 5.00 9.00
3 8.00 3.00 5.00 9.00
4 4.00 6.00 12.50 9.00
5 8.00 15.00 12.50 5.00
6 20.00 15.00 7.50 1.00
7 20.00 9.00 2.50 9.00
8 12.00 3.00 12.50 1.00
9 4.00 15.00 2.50 7.00
10 20.00 3.00 10.00 7.00
11 4.00 15.00 12.50 5.00
12 16.00 12.00 7.500 9.00
13 12.00 15.00 10.00 9.00
14 20.00 12.00 12.50 3.00
15 16.00 15.00 5.00 3.00
16 20.00 6.00 5.00 5.00
17 8.00 6.00 7.50 7.00
18 8.00 9.00 10.00 3.00
19 12.00 12.00 5.00 7.00
20 16.00 6.00 10.00 1.00
21 8.00 12.00 2.50 1.00
22 16.00 3.00 2.50 5.00
23 4.00 3.00 7.50 1.00
24 4.00 9.00 5.00 1.00
25 12.00 9.00 7.50 5.00
26 20.00 15.00 2.50 1.00
27 4.00 15.00 2.50 9.00
28 8.00 8.00 8.00 8.00
29 12.00 9.00 7.50 5.00
30 20.00 3.00 12.50 1.00
*The bold numbers represent the validation set.

Fig. 4 (a) Percentage lack of fit and (b) variance percentage of MCR-ALS model

 

Fig. 3 RMSEC plot of the cross-validation results of the calibration set as 
a function of the number of latent variables used to construct (a) PLS cali-
bration and (b) PCR calibration
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spectral and concentration profiles were recovered dur-
ing the ALS optimization using a one-by-one test sample 
as recommended in multivariate calibration models [41]. 
The predicted concentrations are presented in (Table S1) 
with a good value of RMSEP. The MCR-ALS model can 
estimate the spectral profiles of drugs, providing a quali-
tative meaning in its algorithms. The estimated spectra 
were closely similar to the original ones (Fig.  5). There-
fore, the MCR-ALS model offers the added benefit of 
qualitative component detection, in addition to its quan-
titative determination ability.

ANN model
It is a rivaled intelligence technique comprised of a sig-
nificant number of simple, meticulously connected nodes 
or synthetic neurons that mimic the authentic nervous 
system function to identify correlations between inputs 
and outputs. ANN is a more effective option for model-
ling both linear and non-linear relationships between 
variables than other established multivariate approaches, 
such as PCR and PLS [11, 42]. The ANN type that was 
trained in this research is the feed-forward model. 81 
neurons were used as an input layer, corresponding to the 
number of spectral data points used, and for the output 
layer, four neurons were used which corresponded to the 
number of compounds to be established in each sample. 
The optimum number of neurons in the hidden layer was 
five using a purelin-purelin transfer function and 100 
epochs. A fully trained ANN’s mean squared error (MSE) 
performance over epochs is shown in Fig. 6. The MSE of 
training was decreased steadily after epoch = 0. Both the 
test and validation plots exhibited a similar pattern with-
out abrupt variation. Figure 7 also shows the predictions 
for training, test, and validating sets diagrams of the cho-
sen layers and neurons.

To evaluate the predictive ability of the chemometric 
models PCR, PLS, MCR-ALS, and ANN models, spec-
tra from the validation set were utilized. The average 
recoveries and RSDs were computed for each component 
(Table  2), indicating favorable outcomes. Table  3 offers 
the regression and validation parameters for the valida-
tion sets to quantify pure samples of PARA, CPM, CAF, 
and ASC. To judge the performance of the proposed 
multivariate calibration models, three statistical tests 
were calculated. The first statistical test was Durbin-Wat-
son statistical test which predicted the correlation among 
prediction residuals [43–45]. The second statistical test 
was the root mean square error of prediction (RMSEP) 
[46]. RMSEP is mostly recognized as a measuring tool for 
the evaluation of prediction quality [46]. The estimation 
of RMSEP plays a key role in the validation of multivari-
ate calibration models as it indicates both the accuracy 
and precision of the model [46]. The third statistical test 
was the elliptical joint confidence region (EJCR) test 
[47, 48]. EJCR test was conducted to compare the per-
formance of ANN and MCR-ALS. Durbin-Watson indi-
cator showed a very low associated probability in each 
of the four individual analytes in Linear models (PCR, 
PLS) (Table 3), indicating that non-linearity was signifi-
cant. Moreover, the non-linear ANN model had the least 
RMSEP and RMSEC (Table 3). The performance of ANN 
when compared with MCR-ALS was statistically dem-
onstrated using an EJCR test, showing that there was no 
statistical difference between the two models Figure S1. 
All results confirmed the idea that ANN is the model of 
choice for the quantitative determination of the studied 
drug mixture. Additionally, only the MCR-ALS model 
can separate the pure spectral profiles of the four compo-
nents. As a result, it was suitable for both qualitative and 
quantitative analysis.

Fig. 5 Pure spectra (—) and MCR-ALS (….) for (a) PARA(b) CPM (c) CAF (d) ASC.
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Assay of pharmaceutical dosage form
The developed chemometric models were used for the 
assessment of PARA, CPM, CAF, and ASC in their dos-
age form. Grippostad C® Capsules contain PARA, CPM, 
CAF, and ASC with a challenging ratio (80:1:10:60) which 
permits the determination of PARA, CAF, and ASC with-
out any interference with CPM. While CPM was quanti-
fied after spiking with 0.75 µg mL− 1 of standard working 
solution of CPM. The good recovery % data results with 
a standard deviation of less than 2 (Table 4), confirm the 
precise quantification of the combined four drugs in their 
pharmaceutical product.

Greenness assessment
To qualify analytical techniques as environmentally sus-
tainable, it is essential to refine analytical procedures by 
eliminating or reducing hazardous reagents, preserving 
energy, and enhancing analyst safety. Refining is required 
throughout the process of analyzing, from gathering sam-
ples to analytical waste management [14, 49]. Therefore, 
it is vital to appraise the environmental impact and pos-
sible repercussions on the workforce when measuring the 

eco-friendliness of analytical techniques. Various assess-
ment methods have been conceived to gauge the green-
ness of analytical procedures [15]. Two metrics were used 
to assess the greenness of the suggested technique, the 
Analytical Eco-Scale, and Analytical Greenness Metric, 
which are significant in assessing eco-friendliness. Ana-
lytical Eco-scale score was determined by subtracting the 
total number of penalty points for the whole procedure 
from a base of 100. An excellent green analysis will show 
a score higher than 75 [26]. The developed technique 
showed a high score on the Eco-scale (85) proving that it 
is an excellent green method of analysis (Table 5). How-
ever, Analytical Eco-scale did not supply comprehensive 
information about the assessed parameters. To provide 
more information, the most recent greenness assessment 
tool, AGREE was implemented [25]. The pictogram of the 
proposed models scored 0.77 indicating that the method 
is green, Fig. 8. This came in agreement with the previ-
ously reported literature that the closer the score to one, 
the better the method [25]. The proposed models showed 
an overall excellent greenness profile. Furthermore, 
The environmental impact assessment of the proposed 

Fig. 6 Best validation performance for the prediction of the ANN model
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models was compared with the reported literature [21–
24]as shown in Table 5and Fig. 8.

Statistical Analysis
The statistical analysis of the chemometric approaches 
developed in this study and the official methods [17, 27], 
presented in Table 6, demonstrated that there was no sig-
nificant disparity between the two in terms of accuracy 
and precision.

Conclusion
The continuous development in chemometrics enables 
the separation and analysis of chemical data beyond uni-
variate analysis. Chemometrics is a potentially success-
ful substitute for expensive chromatographic techniques. 
The proposed chemometric models have been proficient 
in swiftly, simply, and consistently measuring PARA, 
CPM, CAF, and ASC simultaneously with excellent sen-
sitivity and reliability. The greenness of the developed 
models was considered during their early development 

stages. Subsequently, they underwent evaluation through 
the AGREE assessment and penalty point scoring sys-
tem. Statistically, no significant differences were found 
between the established and official ones in terms of 
accuracy, and precision. Thus, the proposed green mul-
tivariate models serve as a practical and environmen-
tally conscious option for the standard analysis of PARA, 
CPM, CAF, and ASC in bulk powder and pharmaceutical 
formulations.

Fig. 7 Prediction for the training, test, and validation diagrams of the ANN model
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Table 3 Performance parameters of the calibration and validation sets calculated for each proposed model
Parameter PCR PLS

PARA ASC CAF CPM PARA ASC CAF CPM
Slope 0.9985 0.9822 0.9535 0.9906 0.9984 0.9631 0.9538 0.9908
Intercept -0.0827 0.1268 0.1474 0.0243 -0.0755 0.2519 0.1457 0.0267
Correlation coefficient (r) 0.9998 0.9997 0.9994 0.9998 0.9999 0.9992 0.9994 0.9998
RMSEC 0.2435 0.2644 0.2532 0.1462 0.2422 0.3430 0.2532 0.1468
RMSEP 0.1178 0.1463 0.2255 0.0724 0.1171 0.2373 0.2247 0.0720
Durbin-Watson DW 0.907 1.358 0.320 1.572 1.030 0.954 0.320 1.644
Durbin-Watson p ˂0.0001 ˂0.0001 ˂0.0001 ˂0.0001 ˂0.0001 ˂0.0001 ˂0.0001 ˂0.0001
Parameter MCR-ALS ANN

PARA ASC CAF CPM PARA ASC CAF CPM
Slope 1.0147 0.9942 0.9939 0.9717 1.001 0.9999 0.9996 0.9976
Intercept -0.1788 0.0000 0.0864 0.0703 0.024 -0.0094 0.0394 0.0456
Correlation coefficient (r) 0.9999 0.9998 0.9997 0.9996 0.9999 1.0000 0.9998 0.9998
RMSEC 0.1412 0.2156 0.1254 0.2315 0.1330 0.2102 0.1195 0.0983
RMSEP 0.3304 0.6973 0.6285 0.6136 0.0699 0.0714 0.0043 0.1131
Durbin-Watson DW - - - - 2.000 2.000 2.000 2.000
Durbin-Watson p - - - - 0.161 1.000 1.000 0.277

Table 4 Quantitative determination of PARA, ASC, CAF, and CPM in the dosage form by the proposed chemometric models
Drugs PCR PLS MCR-ALS ANN

%Recovery ± S.D.*

Grippostad C® capsules PARA 98.21 ± 0.56 98.63 ± 0.25 98.22 ± 0.58 99.12 ± 0.23
ASC 98.56 ± 0.88 98.23 ± 0.36 99.56 ± 0.16 98.63 ± 0.45
CAF 99.25 ± 0.69 100.22 ± 0.14 100.12 ± 0.23 99.58 ± 0.69
CPM 97.98 ± 0.89 98.21 ± 0.26 98.78 ± 0.24 98.67 ± 0.36

*Average of three determination

Table 5 A comparison between the developed chemometric models and the reported methods using analytical Eco-scale
Parameters proposed models Reported methods

 [21]  [22]  [23]  [24]
Reagents
Methanol
Distilled water
Ethanol

12
-
-

-
0
-

12
-
-

-
0
-

-
-
8

Instrument
Energy (˂ 0.1 kWh per sample 0 0 0 0 0
Occupational hazard 0 0 0 0 0
waste 3 3 3 3 3
Total PPS 15 3 15 3 11
Analytical Eco-scale score 85 (Excellent green 

analysis)
97 (Excellent green 
analysis)

85 (Excellent green 
analysis)

(Excellent green 
analysis)

89(Ex-
cellent 
green 
analysis)



Page 11 of 13Mouhamed et al. BMC Chemistry           (2024) 18:44 

Table 6 Statistical comparison of the results obtained by the proposed chemometric models and the official methods for the 
determination of PARA, ASC, CAF, and CPM in their pure powdered form
Paracetamol [a]

Methods PCR PLS MCR-ALS ANN Official methods*[a][b][c]

Mean 100.11 100.12 100.36 100.29 101.48
S.D. 1.42 1.67 1.66 0.58 0.88
Variance 2.02 1.85 2.74 0.34 0.79
n 5 5 5 5 5
Student’s t-test (2.036) 1.827 2.008 1.332 2.49
F value (6.39) 2.56 2.34 3.47 2.32
Ascorbic acid[a]

Mean 99.80 99.51 100.03 99.60 98.46
S.D. 1.39 1.99 1.67 0.79 0.92
Variance 1.93 3.98 2.79 0.62 0.85
N 5 5 5 5 5
Student’s t-test (2.306) 1.797 1.068 1.84 2.100
F value (6.39) 2.27 4.68 3.28 1.37
Caffeine[c]

Mean 98.53 98.51 97.80 100.49 99.58
S.D. 2.47 2.45 1.4 0.98 1.22
Variance 6.10 4.9 2.13 0.96 1.49
N 5 5 5 5 5
Student’s t-test (2.306) 0.850 0.946 2.091 1.299
F value (6.39) 4.09 3.28 1.43 1.56
Chlorpheniramine maleate[b]

Mean 99.59 100.09 99.80 100.63 99.25
S.D. 0.75 1.02 2.23 1.26 1.28
Variance 0.56 2.04 4.96 1.59 1.65
N 5 5 5 5 5
Student’s t-test (2.306) 0.512 0.978 0.522 1.715
F value (6.39) 2.95 1.23 3.00 1.04
[a] British pharmacopeial method: Titrimetric method with 1 M cerium sulfate until a greenish-yellow color is obtained.
[b] USP pharmacopeial method: Non-aqueous titration using standard 0.1 M perchloric acid using Crystal violet as an indicator.
[c] USP pharmacopeial method: HPLC method using C8 column with a mobile phase composed of sodium acetate solution: acetonitrile: tetrahydrofuran (191:5:4, by 
volume) at a flow rate of 1.0 mL/min and UV detection wavelength at 275.0 nm.

Fig. 8 AGREE green profile assessment of the reported methods (A) [21], (B) [22], (C) [23], (D) [24], and (E) the developed chemometric methods for 
determination of PARA, CPM, CAF, and CPM.
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