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Abstract 

Anti‑cancer peptides (ACPs) are short peptides known for their ability to inhibit tumor cell proliferation, migration, 
and the formation of tumor blood vessels. In this study, we designed ACPs to target receptors often overexpressed 
in cancer using a systematic in silico approach. Three target receptors (CXCR1, DcR3, and OPG) were selected for their 
significant roles in cancer pathogenesis and tumor cell proliferation. Our peptide design strategy involved identifying 
interacting residues (IR) of these receptors, with their natural ligands serving as a reference for designing peptides 
specific to each receptor. The natural ligands of these receptors, including IL8 for CXCR1, TL1A for DcR3, and RANKL 
for OPG, were identified from the literature. Using the identified interacting residues (IR), we generated a peptide 
library through simple permutation and predicted the structure of each peptide. All peptides were analyzed using 
the web‑based prediction server for Anticancer peptides, AntiCP. Docking simulations were then conducted to ana‑
lyze the binding efficiencies of peptides with their respective target receptors, using VEGA ZZ and Chimera for inter‑
action analysis. Our analysis identified HPKFIKELR as the interacting residues (IR) of CXCR‑IL8. For DcR3, we utilized 
three domains from TL1A (TDSYPEP, TKEDKTF, LGLAFTK) as templates, along with two regions (SIKIPSS and PDQDATYP) 
from RANKL, to generate a library of peptide analogs. Subsequently, peptides for each receptor were shortlisted based 
on their predicted anticancer properties as determined by AntiCP and were subjected to docking analysis. After dock‑
ing, peptides that exhibited the least binding energy were further analyzed for their detailed interaction with their 
respective receptors. Among these, peptides C9 (HPKFELY) and C7 (HPKFEWL) for CXCR1, peptides D6 (ADSYPQP) 
and D18 (AFSYPFP) for DcR3, and peptides P19 (PDTYPQDP) and p16 (PDQDATYP) for OPG, demonstrated the highest 
affinity and stronger interactions compared to the other peptides. Although in silico predictions indicated a favorable 
binding affinity of the designed peptides with target receptors, further experimental validation is essential to confirm 
their binding affinity, stability and pharmacokinetic characteristics.
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Highlights 

• An in silico strategy to design anti‑cancer peptides with high affinity for differentially expressed receptors (tar‑
gets) on cancer cells, specifically CXCR1, DcR3, and OPG receptors.

• Interacting residues of natural ligands and their receptors as a guide to creating a peptide library.
• AntiCP to assess the anti‑cancer properties of the designed peptides.
• Docking simulations to analyze the binding efficiencies of the peptides with their respective target receptors.

Keywords Anticancer peptides, Homology modeling, CXCR1, DcR3, OPG

Introduction
Traditional chemotherapy drugs, though effective, often 
come with debilitating side effects due to their lack of 
specificity and harming healthy cells during the treat-
ment. Target specificity, selectivity and multidrug resist-
ance remain among the most significant challenges in the 
ongoing battle against cancer. Peptide-based therapeutics 
offer a promising avenue for addressing these challenges 
in cancer treatment. Peptides, short chains of amino 
acids, are versatile and can be engineered to interact with 
specific tumor markers, offering higher target specific-
ity and lower off-target effects [1]. Peptide-based drug 
discovery has explored numerous targets ranging from 
receptors to enzymes, with the potential to modulate 
intracellular signaling. Recent successes in peptide-based 
drugs have further expanded the range of potential thera-
peutic targets, providing researchers with a more diverse 
array of options to explore anticancer therapies [2, 3].

Despite the increased number of pharmacological for-
mulations of the peptides, multifaceted challenges such 
as specificity, stability, delivery and bioavailability still 
exist. Numerous peptides have originated from animal 
and plant sources or are recombinant or synthetic pep-
tides. However, peptides mimicking natural ligands that 
have been involved in cancer-related signaling pathways 
have received great attention and could overcome some 
of these problems. Generally, such peptides have dem-
onstrated stable pharmacokinetic profiles, low toxic-
ity, and minimal immunogenicity. However, ensuring 
peptide stability and efficient delivery to the target site 
under physiological conditions remains critical due to 
enzymatic degradation and proteolysis [4]. Moreover, the 
emergence of resistance by cancer cells over time poses 
a substantial clinical concern, underscoring the impor-
tance of developing peptides that retain efficacy over 
prolonged periods [5]. This necessitates a comprehensive, 
interdisciplinary approach, where ongoing explorations 
and modifications of anticancer peptides will play pivotal 
roles in both cancer prevention and treatment.

Undoubtedly, receptor-based peptide therapeutics 
have had the most profound impact in this field [6]. The 
primary focus revolves around targeting and inhibit-
ing the uncontrolled proliferation of cells driven by 
overexpressed tumor proteins, particularly cell mem-
brane receptors [7–9]. These peptides were strategically 
engineered to bind within the small, functionally criti-
cal cavities of the target proteins, disrupting specific 
catalytic centers or interfering with the binding sites 
of natural substrates. In silico peptide designing offers 
valuable resources for designing and prescreening pep-
tides before their costly and labor-intensive in vivo syn-
thesis, modifications and characterization [10–14].

In this study, peptide inhibitors were designed against 
three well-known tumor-specific receptors: CXC 
chemokine receptor type 1 (CXCR1) [15, 16], decoy 
receptor 3 (DcR3) [17] and osteoprotegerin (OPG) 
[18–20]. These proteins play crucial roles in inhibiting 
apoptosis directly or indirectly. CXCR1, in association 
with ligand IL8, controls the leukocyte transmission 
into tumor cells, modifies tumor immune response, 
regulates angiogenesis, increases tumor growth and 
survival, and promotes metastasis. DcR3 is an immu-
nomodulator whose expression is elevated in tumors 
offsets the effect of TL1A and TRAIL and regulates the 
metastatic potential of cancer cells [21, 22]. OPG binds 
to RANKL to regulate bone metastasis, control tumor 
invasion in bone and modulate cellular integrity [20]. 
Briefly, our methodology involved generating a peptide 
library against CXCR1, OPG and DcR3, utilizing the 
information of interacting residues between the recep-
tor and its corresponding ligand. Subsequently, the 
peptides were docked against their respective targets, 
and those demonstrating the lowest binding energies 
along with anticancer properties were identified as the 
top candidates. The objective is to establish a ground-
work for developing precise and efficient anti-cancer 
therapies customized to the distinct molecular features 
of tumors, thereby enhancing the target specificity and 
pharmacokinetic profile of the peptides [13, 14].
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Methods
Selection of target receptors
The workflow of this study comprised several pivotal 
stages, primarily encompassing the identification of tar-
get receptors (TR), screening for their corresponding 
natural ligands, protein modeling, analysis of interact-
ing residues (IR) between ligands and their TRs, and the 
generation and subsequent screening of a peptide library 
(Fig. 1).

The screening of TRs was based on their pathogenic 
role in cancer progression. The criteria for selection of 
TRs were overexpression in cancer, resistance to apop-
tosis, involvement in metastasis, invasion and support 
of angiogenesis for nutrient supply. The expression pro-
files of the selected protein were further validated in both 
normal and cancer cells from The Human Protein Atlas 
[23]. Based on the above parameters, three well-known 
tumor recepetor proteins i.e., CXCR1, DcR3 and OPG 
were shortlisted for downstream analysis. The specifics 
of the signaling pathway and the upstream and down-
stream regulators of these TRs were acquired from Tar-
get Explorer [24] (Table 1).

Protein structure of selected receptors
We obtained 3D structures of selected proteins from 
the Research Collaboratory for Structural Bioinformat-
ics Protein Data Bank (RCSB PDB). If 3D crystal struc-
tures for the proteins were unavailable, computational 
modeling was performed using JPred [25] and PSIPRED 
[26]. The tertiary structure was obtained from Mod-
Web [27], CPH model 3.2 server [28] and Phyre2 [29]. 
Phyre2 was primarily used to identify a suitable tem-
plate through pairwise sequence alignment, after which 
the structure was predicted based on that template. The 
modeled structure was verified using Verify 3D [30] and 
PROCHECK [31]. Structures obtained from various tools 
were highly consistent. The physiochemical properties 
of OPG proteins were computed using ProtParam [32]. 
ProtParam takes protein sequence as input and computes 
amino acid composition, the total number of amino acid 
residues in protein, molecular weight, total number of 
positive and negative charges on protein, atomic formula, 
total number of atoms, aliphatic index instability index 
and average hydropathicity (Additional file  1: Table  S1) 
[32].

Prediction of interacting residues (IR)
The IR of the natural ligands and their target proteins 
served as a basis for designing peptides against the TRs 
(Table  2). The amino acid residues of TR involved in 
interactions with their respective ligands were obtained 

from research articles, PDB and bioinformatics tools 
 LIGSITECSC [33], Active Site Prediction (ASP) [34] and 
SiteHound [35]. The binding residues obtained from vari-
ous sources were validated through result comparisons.

The PDB file of the target was uploaded to  LIGSITECSC 
with a grid spacing of 1.0 Å and a 5.0 Å probe radius to 
identify the binding site. Subsequently, the ASP server 
predicted cavities and assessed them based on the physi-
ochemical properties of amino acids lining these cavities. 
It is worth noting that the top three predicted cavities 
have a reported accuracy of 92%. The PDB file was suc-
cessfully processed, leading to the identification of ten 
binding cavities via the ASP online server. These bind-
ing sites were further identified using SiteHound, with 
CMET-Methyl Carbon serving as the probe. Finally, the 
IR of the target receptor proteins and ligands were visual-
ized using Chimera.

Peptide library
Analog Generation: Based on the interacting residues as 
identified above (Table  2), a library of peptide analogs 
from these sequences was generated through permuta-
tion using the online tool AntiCP [36]. The physiochemi-
cal properties of all the peptides were studied by AntiCP.

Prediction of the tertiary structures of peptides
The prediction of the tertiary structures of peptides was 
carried out using Pepstr [37]. This prediction process 
encompassed three steps: (1) The forecast of second-
ary structures, including loops, alpha helices, and turns, 
using the beta-turn method; (2) Generating the initial 
conformation for the given sequence, with phi and psi 
values corresponding to the predicted secondary struc-
tures; (3) Subjecting the initial conformation to energy 
minimization and dynamic simulations. Subsequently, 
the final conformation was saved in the PDB file format 
[37].

Molecular docking
The analogs were subjected to docking with their respec-
tive targets using PyRx v0.8 [38]. PyRx computed bind-
ing energies, identified interacting residues in both the 
TR and peptides and categorized the types of interac-
tions between target receptors and peptides. The docking 
results obtained from PyRx were saved in pdbqt format. 
Subsequently, the out_pdbqt files of both the ligands and 
the proteins were processed in VEGA ZZ [39, 40]. The 
output files for both the protein and ligands were com-
bined in VEGA ZZ and saved in pdb format. For a more 
comprehensive analysis binding energies, interacting res-
idues of proteins and peptides, hydrogen bonding, hydro-
phobic interactions and other external bonds were also 
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Fig. 1 The workflow of the study. TR Target Receptors, IR Interacting Residues, Str Structure
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examined. This analysis was performed by opening the 
prepared.pdb file from VEGA ZZ [40] in LIGPLOT [41] 
which generated 2D plots illustrating the protein–ligand 
complexes.

Cross‑binding interactions with homologues of TR
Beyond our primary focus on the main TR, we 
also aimed to investigate the binding affinity of 
the designed peptides against other receptors that 
share high homology with the selected receptors. To 
explore these interactions, we conducted sequence 
comparisons between the TR and their homologs 
that share the same ligands using EMBOSS Needle 
and PSI-BLAST [42]. EMBOSS Needle facilitates the 
determination of optimal sequence alignments and 
reveals the degree of sequence identity between them. 
To gain deeper insights, we conducted a search for 
homologous structures of TR in the database using 
PSI-BLAST. Subsequently, the selected peptides were 
subjected to docking with the homologs of TRs, and 
the results of this docking were analyzed and com-
pared with the docking results of the ligands with pri-
mary receptors.

Results
The 3D structure files were retrieved from PDB for 
CXCR1 (PDB ID: 2LNL) and DcR3 (PDB ID: 3MHD) 
(Fig. 2A, B). The N-domain of CXCR1 was missing from 
the crystal structure so the N domain was modeled. The 
crystal structure of OPG was unknown so homology 
modeling was performed for OPG (Fig. 2C).

Identification of interacting residues of target proteins
Interacting sites for all three receptors were system-
atically identified and verified through various meth-
ods including a comprehensive literature search, 
SiteHound, Active Site Prediction and  LIGSITECSC. 
The details of all identified IR residues are provided in 
Additional file 2.

CXCR1: The PDB complex structure with IL8 
revealed binding regions at 17–24 and 9–14. The lit-
erature search highlighted the significance of the N 
domain (residues 1–39) and the extracellular loop (resi-
dues 97–111) in facilitating ligand binding (Additional 
file  1: Table  S2) [43, 44]. The collective insights from 
these sources consistently pinpointed residues within 
the N-domain and extracellular loops as active binding 
sites for CXCR1 [45].

DcR3: The binding regions of DcR3 from PDB com-
plexes with TL1A and LIGHT were identified to con-
tain residues 72 to 251 and 29 to 198, respectively. The 
literature review identified critical amino acid residues 
crucial for binding, including Phe81, Trp84, Leu85, 
Arg89, Trp90, Gly96, Cys95, Asn92, Tyr121, Pro122, 
Phe125 and Val219. The common binding residues 
included Phe81, Trp84 and Leu85 [46].

OPG: The binding region for OPG, derived from the 
PDB complex with RANKL, extended from residue 31 
to 186. Our literature search yielded a set of binding 
residues, namely Glu116, Phe117, Glu114, Thr55, Ser63, 

Table 1 Biological details of the selected receptor proteins

Targets Cellular location Type Regulates Regulated by Signaling pathways Natural Ligands

CXCR1 Cell membrane Receptor Ca2 + 
Erk1/2
CCR5
CXCR4

IL8
TNF
Lipopoly‑
saccharides

IL8 Signaling
Agranulocytes adhesion

IL8
CXCL6

OPG Extracellular space Decoy
Receptor
Secreted

RANKL
RANK
Ca+2

TRAIL
DR4

IL1
RANKL
TNF

NF‑KB Signaling
IL‑6 Signaling

RANKL
TRAIL
APRIL
RUNX2

DcR3 Extracellular space Decoy
Receptor
Secreted

IL6, IL10,
IL2, IFNG

VEGF
MTOR

PI3K/AKT/GSK‑3beta/beta‑
catenin signaling pathway

FASLG
TNFSF14
TNFSF15
PPP1R7

Table 2 Interacting residues of ligands and their corresponding 
target proteins for peptide design

TR‑Ligands Interacting residues

IL8‑CXCR1 His18‑Pro19‑Lys20‑Phe21‑Ile22‑Lys23‑Glu24‑Leu25‑Arg26

TL1A‑DcR3 Thr118‑Asp119‑Ser120‑Tyr121‑Pro122‑Glu123‑Pro124

Thr172‑Lys173‑Glu174‑Asp175‑Lys176‑Thr177‑Phe178

Leu56‑Gly57‑Leu58‑Ala59‑Phe60‑Thr61‑Lys62

RANKL‑OPG Ser246‑Ile247‑Lys248‑Ile249‑Pro250‑Ser251‑Ser252

Pro300‑Asp301‑Gln302‑Asp303‑Ala304‑Thr305‑Tyr306‑
Pro307
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Pro64, Val65, Glu68, Glu93, Glu95, Arg90 and Phe96. 
Lastly, the consensus for OPG emphasized the impor-
tance of the region spanning from residue 31 to 186 in 
facilitating interactions [47] (Additional file 1: Table S2).

Identification of interacting sites for ligands
Similarly, interacting sites for ligands of their respective 
receptors were identified through a comprehensive litera-
ture search, SiteHound, PDB and Active Site Prediction. 
The details of all identified IR residues are provided in 
Additional file 1: File S3.

IL8: The binding regions of IL8 with CXCR1 as identi-
fied from PDB complexes [44] spanned from residue 19 
to 99. The literature search highlighted the significance 
of the N-domain, beta-sheet and C-terminal regions of 
IL8 for binding with CXCR1 [44]. A comparison of bind-
ing residues from all sources revealed common residues 
such as Tyr13, Phe17, Pro19, Lys20, Ile22, Lys23, Ile40, 
Pro46, Glu48, Leu49, Cys50 and Phe65 (Additional file 1: 
Table  S3). The key binding residues included Thr12, 
Phe17, Lys20, Ser44, Pro46, Glu48, Leu49, Cys50 and 
Val61.

TL1A: The binding region identified from the PDB 
complex of DcR3 and TL1A, spanned from residue 72 
to 251. The literature review revealed residues Arg36, 
Leu56, Gly57, Met91, Asp108, Ser120, Tyr121, Phe122, 
Glu123, Phe124, Asn140, Phe142, Thr172 and Glu174 
for DcR3-TL1A binding [46]. A comparison of binding 

residues from all sources indicated that Ser120 is an 
essential residue in the binding site.

RANKL: The binding region established from the PDB 
complex of RANKL and OPG, covered residues 162 to 
317. In literature, residues from 177–183 and 162–317 
regions of RANKL, were reported as crucial for binding 
with OPG. Specific residues identified included Lys180, 
Asp189, Arg190, His223, Gln236 and Ile249 involved 
in binding [47]. A comparison of binding residues from 
all sources indicated that the region 177–183 is vital for 
receptor binding, and important residues such as His223, 
Gln236 and Thr182 were found consistent across all the 
sources (Additional file 1: Table S3).

Selection of amino acid residues for peptide designing
Following the identification of consensus regions as 
detailed above, we selected specific amino acid residues 
to design peptides (Table 2).

CXCR1-IL8: The binding domain with residues HPK-
FIKELR (His18- Pro19- Lys20- Phe21- Ile22- Lys23- 
Glu24- Leu25-Arg26) is known to interact with the 
extracellular loop of its receptor CXCR1. This domain is 
of particular interest as its ELR (glutamic acid-leucine-
arginine) motif plays a role in promoting angiogenesis 
when interacting with the CXCR1 receptor. Therefore, 
this domain was selected for designing a peptide with the 
goal of potentially inhibiting angiogenesis (Table 2).

Fig. 2 Crystal structures of target receptors: A CXCR1 (PDB ID 2LNL). It consists of 7 TM and N‑terminus and C‑terminus; B DcR3 (PDB ID 3MHD); C 
Predicted model of OPG using Phyre2. The segment 26–186 of OPG is modeled with 99.9% confidence using PDB ID 3urf as a template
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DcR3-TL1A: DcR3 binds to the DE loop and AA loop 
of TL1A, from which important residues were identified. 
The first selected domain, TDSYPEP (Thr118-Asp119-
Ser120-Tyr121-Pro122-Glu123-Pro124), was selected 
from the DE loop of TL1A. This selection was primar-
ily based on the presence of critical interacting residues, 
Ser120 and Tyr121. The second domain was chosen from 
the AA loop with the sequence TKEDKTF (Thr172- 
Lys173- Glu174- Asp175- Lys176- Thr177- Phe178) 
because it contains residues Thr172 and Glu174, which 
are essential for binding to the DcR3 receptor. Addition-
ally, another binding region within the AA loop with 
the sequence LGLAFTK (Leu56- Gly57- Leu58- Ala59- 
Phe60- Thr61- Lys62) was also selected for peptide 
design, as it contains Leu56 and Gly57, which are impor-
tant for receptor binding (Table 2).

OPG-RANKL: The residue Lys248 forms a hydrogen 
bond with OPG, and Ile249 in the DE loop of RANKL 
provides specificity in the interaction with DcR3. There-
fore, the region SIKIPSS (Ser246- Ile247- Lys248- Ile249- 
Pro250- Ser251- Ser252) was chosen for peptide design. 
Additionally, the residues Pro300, Asp301 and Gln302 
of RANKL are involved in interaction with OPG. There-
fore, the region PDQDATYP (Pro300-Asp301- Gln302- 
Asp303- Ala304-Thr305-Tyr306-Pro307) was selected for 
designing a peptide (Table 2).

Peptide generation
Initially, 26 peptides were generated for CXCR1, 23 
for DcR3 and 21 for OPG. The physicochemical prop-
erties of all the peptides were studied by AntiCP 
(Additional file  1: Table  S4). Following analysis of the 

physicochemical properties of the peptide analogs 
using Antic, the top 5 candidates that represented 
the best anti-cancer peptides were selected (Table  3). 
Analog selection was based on analogs having prop-
erties similar to the reference peptides in AntiCP and 
they were subsequently subjected to docking studies 
with their respective TR.

Comparison of docking energies
To assess the binding potential of the peptides, the 
peptides were docked with the TRs and binding ener-
gies were evaluated. The binding energies of various 
poses of shortlisted peptides are shown in Table 4. The 
complexes were then selected based on lower binding 
energy values, indicating greater stability. The binding 
energies of various poses of all the peptides are shown 
in Additional file 1: Table S5.

For CXCR1, the binding energies of the designed pep-
tides ranged from − 8.4 to − 6.4. The peptide C9 exhib-
ited the best binding affinity with a binding energy of 
−  8.4. Additionally, C7 bound with a binding energy 
of −  8.3, while C1 and C5 showed binding energies 
of −  8.1. The peptides D1, D6 and D18 exhibited the 
most favorable binding energies of − 7.2 against DcR3, 
whereas D7 displayed the least binding energy at − 4.7. 
In the case of OPG, peptide P19 demonstrated a strong 
binding energy of − 6.9, surpassing the other peptides 
(Table 4). Furthermore, peptides P16, P5, P10, P8, P20, 
P6, P7 and P18 exhibited moderate binding energies 
ranging from − 6.0 to − 6.8 (Additional file 1: Table S5).

Table 3 Physiochemical properties of selected peptides characterized using AntiCP

HPo; hydrophobicity, HP: hydropathicity, HPi; hydrophilicity, AP; amphipathicity, molecular weight, charge and anticancer properties

Target receptor Peptides labels Peptides sequence HPo HP HPi AP Charge

CXCR C9 HPKFELY − 0.15 − 0.99 0.91 − 0.16 0.5

C7 HPKFEWL − 0.1 − 0.93 − 0.9 − 0.31 0.5

C5 HPKFEWR − 0.42 − 2.11 1.26 0.37 1.5

C1 FHPKELY − 0.15 − 0.99 0.91 − 0.16 0.5

C26 HPKF − 0.24 − 1.48 0 1.28 1.5

DcR3 D6 ADSYPQP − 0.03 − 0.6 0.18 − 0.69 0

D18 AFSYPFP 0.16 0.3 0 − 1.07 0

D8 TDSYPAP − 0.15 − 1.1 0 0.01 − 1

D2 ADSYPEP − 0.21 − 1.5 0.18 0.5 − 2

D12 TDSYPFP − 0.1 − 0.96 0 − 0.27 − 1

OPG P10 HDQDATYF − 0.23 − 1.39 0.34 0 − 1.5

P5 KTSIKIPS − 0.08 0.31 0.92 0.15 2

P16 PDQDATYP − 0.27 − 1.74 0.16 0.38 − 2

P19 PDTYPQDP − 0.31 − 2.16 0.16 0.44 − 2

P8 CDQDATYF − 0.17 − 0.68 0.16 − 0.06 − 2
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Post‑dock interaction analysis
Post-Docking Interaction Analysis of CXCR1 and Pep-
tides: The post-docking interaction of CXCR1 with C9, 
C7, C5, C1 and C26 is shown in Fig. 3. The interaction 
analysis of peptides with the target protein CXCR1 
reveals crucial details about the binding interactions 
(Additional file 1: Table S6).

Peptide C9: The post-docking interaction of CXCR1 
with peptide C9 is shown in Fig. 3. Amino acid residues 
Arg135, Ala138, Arg242 and His334 of CXCR1 form 
hydrogen bonds with Phe4, Glu5, Lys3 and Pro2 of pep-
tide C9. Arg68, Val69, Val73, Ser72, Asp134, Leu137, 
His141, Leu146, Thr147, Phe245, Ala246, Leu249, 
Asn345 and Val346 of CXCR1 engage in hydrophobic 
interactions with peptide C9. The pink lines show non-
ligand bonds, cyan lines show ligand bond and green 
dotted lines with distances mentioned show hydrogen 
bond and red hemispheres shows hydrophobic inter-
actions. Interactions are visualized in Chimera and 
the ligand is colored pink His334, Arg135, Ala138 and 
Arg242 are colored red, cyan, yellow and purple respec-
tively, indicating their formation of hydrogen bonds. 
The hydrophobic residues are represented in green 
color.

Peptide C7: The residues of CXCR1 including Arg242, 
Arg333 and His334 form hydrogen bonds with peptide 
C7. Amino acids Val69, Arg71, Ser72, Thr74, Asp75, 
Arg135, Leu137, Ala138, Leu146, Thr147, Gln148, 
Met241, Phe245, Ala246, Leu249 and Val346 of CXCR1 
participate in hydrophobic interactions with peptide C7.

Peptide C5: The residues Arg135, Arg242, Ser343 and 
Asn345 of CXCR1 establish hydrogen bonds with Pro2, 
Arg7 and Glu5 residues of peptide C5. Val69, Arg71, 
Ser72, Asp134, Arg135, Leu137, Ala138, His141, Thr143, 
Leu146, Thr147, Gln148, Fhe245, Ala246, Val248, 
Leu249, His334, Arg335 and Val344 of CXCR1 engage in 
hydrophobic interactions with peptide C5.

Peptide C1 and C26: Ser72 and Asp75 of CXCR1 form 
hydrogen bonds with residues Phe1 and Val73 of peptide 
C1. Val73 and Arg242 of CXCR1 form hydrogen bonds 
with Tyr7 and Lys4 of peptide C1. Arg333 and His334 of 
CXCR1 form hydrogen bonds with Glu5 of peptide C1. 
Ser72 and Val73 of peptide C26 establish hydrogen bonds 
with Arg7 and Asp3 of CXCR1. Val69, Arg71, Asp75, 
Asp134, Arg135, Leu137, Ala138, Leu146, Gln148, 
Arg242, Phe245, Ala246, Val248, Leu249, Asn311, 
Arg333 and His334 of CXCR1 participate in hydrophobic 
interactions with these peptides.

Table 4 Predicted docking energies of target proteins with selected peptides

FBE Final Binding Energy

Target Peptide Peptide Docking energies and poses

Receptor Label Sequence 1 2 3 4 5 6 7 8 9 FBE

CXCR C9 HPKFELY − 8.4 − 8.2 − 8.1 − 8 − 8 − 8 − 7.8 − 7.5 − 7.3 − 8.4

C7 HPKFEWL − 8.3 − 8 − 7.9 − 7.9 − 7.8 − 7.7 − − − 7.5 − 8.3

C5 HPKFEWR − 8.1 − 8.1 − 8.1 − 7.9 − 7.8 − 7.6 − − − 7.1 − 8.1

C1 FHPKELY − 8.1 − 8.1 − 8 − 7.8 − 7.7 − 7.7 − 7.7 − 7.6 − 7.6 − 8.1

C26 HPKF − 4.7 − 4.3 − 4.2 − 4.2 − 4.2 − 4.1 − 4 − 3.9 − 3.7 − 4.7

DcR3 D6 ADSYPQP − 7.2 − 6.3 − 6.1 − 6.1 − 6 − 6 − 6 − 6 − 5.9 − 7.2

D18 AFSYPFP − 7.2 − 7.1 − 7.1 − 6.9 − 6.8 − 6.8 − 6.8 − 6.7 − 6.7 − 7.2

D8 TDSYPAP − 6.7 − 6.7 − 6.5 − 6.5 − 6.4 − 6.4 − 6.4 − 6.3 − 6.3 − 6.7

D2 ADSYPEP − 6.4 − 6.2 − 6 − 5.9 − 5.9 − 5.9 − 5.9 − 5.8 − 5.8 − 6.4

D12 TDSYPFP − 5.8 − 5.7 − 5.6 − 5.6 − 5.6 − 5.6 − 5.6 − 5.5 − 5.5 − 6.8

OPG P10 HDQDATYF − 6.6 − 6.5 − 6.3 − 6.2 − 6.2 − 6.1 − 6.1 − 6.1 − 6 − 6.6

P5 KTSIKIPS − 6.6 − 6.1 − 6.1 − 6 − 6 − 6 − 5.9 − 5.9 − 5.9 − 6.6

P16 PDQDATYP − 6.8 − 6.3 − 6.3 − 6.3 − 6.2 − 6.1 − 6.1 − 6.1 − 6 − 6.8

P19 PDTYPQDP − 6.9 − 6.8 − 6.8 − 6.8 − 6.6 − 6.6 − 6.5 − 6.5 − 6.4 − 6.9

P8 CDQDATYF − 6.5 − 6.4 − 6.2 − 6.1 − 6.1 − 6 − 6 − 6 − 5.9 − 6.5

(See figure on next page.)
Fig. 3 Post‑Docking Interaction of CXCR1 with Respective Peptides. Left Panel: Schematic Representation using LIGPLOT. Pink lines represent 
non‑ligand bonds. Cyan lines denote ligand bonds. Green dotted lines, with annotated distances, indicate hydrogen bonds. Red hemispheres 
signify hydrophobic interactions. Right Panel: Visualization in Chimera. All hydrophobic residues are depicted in green. The ligands are consistently 
represented in pink in all interactions. C9: His334 (red), Arg135 (cyan), Ala138 (yellow), and Arg242 (purple) form hydrogen bonds. C7: His334 (red), 
Arg333 (yellow), and Arg242 (purple) form hydrogen bonds. C5: Arg135 (red), Arg242 (yellow), Ser343 (purple), and Asn345 (cyan) form hydrogen 
bonds. C1: Ser72 (red), Val73 (purple), Asp75 (yellow), Arg242 (cyan), Arg333 (light green) and His334 (blue) form hydrogen bonds. C26: Ser72 (red) 
and Val73 (yellow) form a hydrogen bond
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These detailed interaction analyses provide insights 
into the binding mechanisms of the peptides with 
CXCR1, shedding light on the specific amino acid resi-
dues involved in hydrogen bonding and hydrophobic 
interactions, which are critical for understanding the 
binding affinity and potential therapeutic applications.

Post-Dock Interaction Analysis of DcR3 and Peptides: 
The post-docking interaction of DcR3 with D6, D18, 
D8, D2 and D12 is shown in Fig. 4 and Additional file 1: 
Table  S6. The analysis of interactions between peptides 
and the DcR3 receptor provides insights into the binding 
mechanisms.

Peptide D6: The residues Gln51, Tyr78, Gln80 and 
Tyr84 of DcR3 form hydrogen bonds with Pro7, Ser3, 
Ala1 and Gln6 of peptide D6. Asn110 of DcR3 forms 
two hydrogen bonds with residues Asp2 and Ala1 of the 
DcR3 receptor. The residues Phe81, Asn83, Leu85, Arg89, 
Arg103 and His109 of DcR3 engage in hydrophobic 
interactions.

Peptide D18: In the docked complex of DcR3 and D18, 
only one hydrogen bond is formed by Tyr78 of DcR3 with 
Ala1 of the peptide. The hydrophobic interactions are 
formed by Pro34, Gln51, Phe81, Trp82, Asn83, Tyr84, 
Leu85 and Arg89 of DcR3.

Peptide D8: The residues Arg87 and Cys88 of DcR3 
both form a hydrogen bond with residue Thr1 of pep-
tide D8. Hydrophobic interactions are formed by Pro37, 
Trp38, Arg39, Arg46, Asn83, Tyr84, Leu85 and Tyr90 of 
DcR3.

Peptide D2: The residues Tyr78, Gln80, Phe81, Glu86 
and Cys88 of DcR3 form single hydrogen bonds with 
Pro7, Glu6, Glu6, Asp2 and Ala1 of peptide D2. Arg87 
forms two hydrogen bonds with Asp2 and Ala1. The 
hydrophobic interactions are formed by Thr79, Trp82, 
Asn83, Tyr84 and Leu85 of DcR3.

Peptide D12: The residues Gln51 and Gln80 of DcR3 
form hydrogen bonds with Pro5 and Thr1 residues of 
peptide D12. The residues Pro34, Tyr78, Phe81, Trp82, 
Asn83, Tyr84, Leu85 and Arg89 of DcR3 engage in 
hydrophobic interactions.

These detailed interaction analyses provide critical 
insights into the binding modes of the peptides with the 
DcR3 receptor. Understanding the specific amino acid 

residues involved in hydrogen bonding and hydrophobic 
interactions is essential for assessing the binding affinity 
and potential therapeutic applications.

Post-Dock Interaction Analysis of OPG and Pep-
tides: The post-docking interaction of OPG with P10, 
P5, P16, P19 and P8 is shown in Fig.  5 and Additional 
file 1: Table 6. Furthermore detailed interaction analysis 
between peptides and the OPG receptor provides essen-
tial insights into the binding mechanisms.

Peptide P10: The residues Val130, Ala133, and Cys160 
of OPG form single hydrogen bonds with Tyr7, Gln3 
and Phe8 of peptide P10. Val131 forms two hydrogen 
bonds with Thr6 and Tyr7 of the peptide. The hydropho-
bic interactions are formed by Glu109, His121, Gln132, 
Gly134, Thr135, Pro136, Thr140, Arg144, Pro146, 
Phe149, Ser156, Lys157 and Pro159 of OPG.

Peptide P5: The residues Thy70, Asp72, Ser77 and 
Leu113 of OPG form single hydrogen bonds with Ile4, 
Ser8, Ser8, Thr2 and Lys1. Lys88 and Gln91 form hydro-
gen bonds with Thr2 of P5. Cys105 forms hydrogen 
bonds with Lys1 and Thr2, Asn102 forms a hydrogen 
bond with Ser3 and Lys5, and Glu137 forms two hydro-
gen bonds with Lys1. The hydrophobic interactions 
involve Thr71, Sr73, His75, Leu81, Ser84, Pro85, Val86, 
His101, Arg103 and Val104 of OPG.

Peptide P16: Glu137 forms a single hydrogen bond with 
Gln3 while Cys105 forms two hydrogen bonds with Gln3 
and Asp4. Lys88 forms two hydrogen bonds with Asp2 
of P16. The hydrophobic interactions involve Gln91, 
Arg103, Val104, Glu106, Leu113 and Pro136.

Peptide P19: Residues Asn102, Asp72, Ser77, Tyr7 
and Lys88 form a single hydrogen bond with Tyr4, Gln6, 
Asp7, Tyr4, Asp2 and Asp2 respectively. The hydropho-
bic interacting residues of OPG include Ser84, Pro85, 
Thr71, Ser73, His75, Leu81, Cys105, Leu113, Pro136 and 
Gln137. The residues Gln91 and Cys105 form a single 
hydrogen bond with Gln3, Glu106 forms a single hydro-
gen bond with Cys1 and Glu137 forms two hydrogen 
bonds with Cys1 and Asp2 of P8.

These detailed interaction analyses provide critical 
insights into the binding modes of the peptides with the 
OPG receptor. Understanding the specific amino acid 
residues involved in hydrogen bonding and hydrophobic 

Fig. 4 Post‑Docking Interaction of DcR3 with Respective Peptides. First Panel: Schematic Representation of LIGPLOT view. Pink lines represent 
non‑ligand bonds. Cyan lines denote ligand bonds. Green dotted lines, with annotated distances, indicate hydrogen bonds. Red hemispheres 
signify hydrophobic interactions. Second Panel: Visualization in Chimera. All hydrophobic residues are colored green. The ligands are consistently 
represented in pink in all interactions. D6: Gln51 (yellow), Tyr78 (purple), Gln80 (light green), and Tyr84 (red) of DcR3 each form one hydrogen 
bond with the peptide. Asn110 (cyan) forms two hydrogen bonds with the peptide. D18: Tyr78 (red) forms one hydrogen bond with the peptide. 
D8: Arg87 (yellow) and Cys88 (purple) each form one hydrogen bond with the peptide. D2: Tyr78 (cyan), Gln80 (blue), Phe81 (purple), Glu86 (light 
green) and Cys88 (yellow) of DcR3 form single hydrogen bonds with Pro7, Glu6, Glu6, Asp2, and Ala1 of peptide D2, respectively. Arg87 forms two 
hydrogen bonds with Asp2 and Ala1. D12: Gln51 (cyan) and Gln80 (yellow) of DcR3 form single hydrogen bonds with Pro5 and Thr1, respectively

(See figure on next page.)
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interactions is essential for assessing the binding affinity 
and potential therapeutic applications.

Homology finding
In addition to interacting with the target receptors, it 
is important to consider that they can also bind with 
other receptors. Besides CXCR1, IL8 also binds with 
other receptors, namely CXCR2 and DARC (Duffy Anti-
gen Receptor Chemokine). The homology between the 
N-domain of CXCR1 and CXCR2 is 27.1%. The homol-
ogy between the N-domains of CXCR1 and DARC is 
20.3%. Similarly, TL1A binds with the TNFRSF25 pro-
tein (Tumor Necrosis Factor Receptor Superfamily-25), 
which has binding regions for TL1A. The homology 
between DcR3 and TNFRSF25 is 16.3%. RANKL exhib-
ited a low binding affinity for homologs of OPG, i.e., 0.5% 
and 15.6% for DR5 and RANK, respectively.

Docking of peptides with other receptors of ligands
The docking results of shortlisted peptides against hom-
ologues of CXCR1, DcR3 and OPG are summarized 
in Additional file  1: Table  S7. The peptides C9, C7, C5, 
C1 and C26 for CXCR1 were docked with its homo-
logues CXCR2 and DARC. These simulations revealed a 
higher binding affinity with DARC compared to CXCR2. 
The peptides designed for DcR3 were also docked with 
TNFRSF25 and TNFRSF21, resulting in binding ener-
gies ranging from − 6.0 to − 5.3 for TNFRSF25 and − 6.1 
to −  5.2 for TNFRSF21, indicating relatively low bind-
ing affinity compared to DcR3. The peptides for OPG 
were docked with RANK and DR5, showing relatively 
low binding affinity with both. Overall, our results sug-
gest that the selected peptides exhibited a higher degree 
of binding affinity with the target receptors compared to 
their homologues.

Discussion
Recent literature recognizes the significance and cost-
effectiveness of in-silico tools and computational mod-
els in designing novel anticancer peptides [36, 48, 49]. 
These peptides exhibit significant potential in selectively 

binding to differentially expressed cell surface receptors 
and proteins, including immune checkpoints, receptor 
kinases, and hormone receptors in cancer, thereby effec-
tively inhibiting their biological activity [49]. Moreover, 
compared to other larger molecules such as monoclonal 
antibodies, peptides possess a better ability to penetrate 
cell membranes and disrupt protein–protein interactions 
with intracellular proteins [48–50, 48, 51]There is com-
pelling evidence that peptide-based therapeutics have 
emerged as promising agents in cancer treatment, offer-
ing opportunities for the development of novel peptides.

Decoy receptors such as CXCR or DcR are emerging 
as actionable targets that can potentially be blocked by 
therapeutic drug candidates to suppress oncogenic sign-
aling [6, 51]. CXCR1, in association with its ligand IL8, 
governs leukocyte recruitment into tumor cells and influ-
ences the tumor immune response. It [52] also regulates 
angiogenesis, promotes tumor growth and survival, and 
facilitates metastasis [52]. Several peptide decoys, includ-
ing cell-penetrating decoy peptides, TNRF-ECD, and 
HIRMAb-TNFR fusion protein, have been developed to 
inhibit the interaction of chemokine receptor signaling 
and are being assessed as therapeutic agents [6] Recently, 
Chang et al. [53] developed an antagonist peptide using 
similar approach, aimed at CXCR1/2, to impede down-
stream signaling pathways by competitively binding with 
IL-8 at CXCR1/2 sites. RF16 demonstrated efficacy in 
diminishing cell proliferation, migration, and invasive-
ness in MDA-MB-231 cells.

Our research theoretically proposes potential peptides 
with high affinity for decoy receptors such as CXCR1, 
DcR3 and DARC, the latter of which binds to angiogenic 
chemokines. Consequently, these peptides hold prom-
ise as robust therapeutic candidates. The strong binding 
affinity of these peptides with these receptors suggests 
their potential to inhibit apoptosis while simultaneously 
inhibiting angiogenesis through their neutralizing effect 
on DARC. This dual action may effectively impede both 
apoptosis and angiogenesis [46, 54].

Osteoprotegerin (OPG) plays a key role in regulat-
ing bone metastasis, controlling tumor invasion within 

(See figure on next page.)
Fig. 5 Post‑Docking Interaction of OPG with Respective Peptides. Left Panel: Schematic Representation using LIGPLOT. Pink lines denote non‑ligand 
bonds. Cyan lines indicate ligand bonds. Green dotted lines with annotated distances represent hydrogen bonds. Red hemispheres depict 
hydrophobic interactions. Right Panel shows a visualization of a chimera. All hydrophobic residues are represented in green. The ligands are colored 
pink in all interactions. P10: Residues Val130 (cyan), Val131 (purple), Ala133 (yellow), and Cys160 (red) of OPG form single hydrogen bonds. P5: 
Residues Tyr70 (light green), Asp72 (purple), Ser77 (white), Gln91 (yellow), Lys88 (cyan), Asn102 (blue), Cys105 (orange), Leu113 (red), and Glu1437 
(black) of OPG form single hydrogen bonds. P16: Glu137 (orange) forms a single hydrogen bond with Gln3. Cys105 (purple) forms two hydrogen 
bonds with Gln3 and Asp4. Lys88 (cyan) forms two hydrogen bonds with Asp2. P19: Asp72 (yellow), Ser77 (blue) and Asn102 (purple) form single 
hydrogen bonds with Gln6, Asp7, Tyr4. Lys88 (orange) and Gln91 (red) form single hydrogen bonds with Asp2. Tyr70 (cyan) forms two hydrogen 
bonds with Tyr4 and Pro5. P8: Gln91 (yellow) and Cys105 (orange) form a single hydrogen bond with Gln3. Glu106 (cyan) forms a single hydrogen 
bond with Cys1. Glu137 (blue) forms two hydrogen bonds with Cys1 and Asp2
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bone tissue, and modulating cellular integrity [54]. The 
OPG/RANKL/RANK pathway holds a pivotal role in 
bone homeostasis and represents a therapeutic target for 
various bone diseases, including osteoporosis [55, 56]. 
OPG, as a soluble decoy receptor, binds to RANKL and 
inhibits its interaction with RANK, effectively prevent-
ing osteoclastogenesis and bone resorption [55]. In a 
previous study [57], peptides derived from OPG-RANKL 
interaction demonstrated efficacy in inhibiting RANKL, 
thereby mitigating bone loss while preserving inflamma-
tory processes. In this study, Leu113-Arg122 was identi-
fied as a putative site for peptide synthesis. Building upon 
the OPG-RANKL interaction, our study proposed two 
regions, SIKIPSS and PDQDATYP, as templates for pep-
tide design.

The peptides designed in this study are not only highly 
specific but also mimic the natural ligands of the targeted 
receptors. Due to their potential for highly specific bind-
ing and low expected immunogenicity, these peptides 
are promising candidates for impeding ligand-receptor 
interactions and hindering downstream signaling path-
ways. However, certain limitations, such as the inability 
to perform MD simulation due to resource constraints, 
are acknowledged. To fortify the study, it is imperative 
to undertake experimental validation and further opti-
mize the designed peptides to validate their potential as 
targeted anti-cancer therapies. Additionally, an in-depth 
exploration into the specificity and selectivity of the pep-
tides concerning cancer cells versus normal cells will be 
conducted to assess their therapeutic potential. Further-
more, the optimization of peptide sequences through 
iterative design modifications will be conducted based on 
the outcomes of experimental validation. This iterative 
process entails refining the peptide structures to improve 
binding affinity, specificity and stability.

Conclusions
This study presents a strategy for designing peptides tar-
geting receptors commonly overexpressed in cancers 
using in-silico methods and computational methods. The 
approach capitalizes on the interaction between recep-
tors and their native ligands to enhance target specificity, 
ensuring a more precise and targeted impact. By mim-
icking natural ligands, the peptides aim to minimize the 
immunogenic response, thereby making the approach 
more clinically favorable. Following interaction analy-
sis, peptides targeting CXCR1, DcR3 and OPG have 
been shortlisted and will be further pursued for in-vivo 
experiments.
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