Open Access

New thermodynamic data for CoTiO3, NiTiO3 and CoCO3 based on low-temperature calorimetric measurements

  • Stephan Klemme1Email author,
  • Wilfried Hermes2,
  • Mathias Eul2,
  • Clazina H Wijbrans1,
  • Arno Rohrbach1 and
  • Rainer Pöttgen2
Chemistry Central Journal20115:54

DOI: 10.1186/1752-153X-5-54

Received: 19 July 2011

Accepted: 19 September 2011

Published: 19 September 2011

Abstract

The low-temperature heat capacities of nickel titanate (NiTiO3), cobalt titanate (CoTiO3), and cobalt carbonate (CoCO3) were measured between 2 and 300 K, and thermochemical functions were derived from the results. Our new data show previously unknown low-temperature lambda-shaped heat capacity anomalies peaking at 37 K for CoTiO3 and 26 K for NiTiO3. From our data we calculate standard molar entropies (298.15 K) for NiTiO3 of 90.9 ± 0.7 J mol-1 K-1 and for CoTiO3 of 94.4 ± 0.8 J mol-1 K-1. For CoCO3, we find only a small broad heat capacity anomaly, peaking at about 31 K. From our data, we suggest a new standard entropy (298.15 K) for CoCO3 of 88.9 ± 0.7 J mol-1 K-1.

Background

Nickel titanate (NiTiO3) and cobalt titanate (CoTiO3) belong to an important group of ilmenite-type transition metal bearing phases with a number of interesting magnetic and electric properties [15]. They are also important for technical applications due to their catalytic properties [68]. CoCO3 is a phase with interesting magnetic properties, which has not been studied in detail [912]. Structures, phase relations and physical properties of these phases are well documented [5, 9, 1321], there is, however, a lack of low-temperature calorimetric data and associated third-law entropies. Other transition metal bearing oxide phases have recently been shown to exhibit large, hitherto unknown low-temperature heat capacity anomalies [2231] and the aim of this paper is to investigate low-temperature heat capacities for NiTiO3, CoTiO3, and CoCO3. To our knowledge, for NiTiO3, CoTiO3, there are no reported low-temperature CP data published in the literature, and the only data for CoCO3 date back to the 1960s.

Experimental

Samples

Heat capacity measurements were performed on synthetic polycrystalline NiTiO3, CoTiO3, and CoCO3 samples. The NiTiO3 and CoTiO3 sample used in our study were synthesized from equimolar mixtures of CoO (Merck, 99.999% purity), NiO (Merck, 99.999% purity) and TiO2 (Merck, 99.99% purity). The TiO2 powder was previously fired at 1,000°C for 12 h to release any absorbed water or hydroxide. The oxides were mixed under acetone in an agate mortar and pestle for 15 min and subsequently pressed into several high density pellets of 3 mm diameter. CoCO3 was purchased from Alfa Aesar (99.5% purity, metals based). X-ray diffraction indicated CoCO3 only, with cell parameters of a = 4.662 ± 0.002 and c = 14.955 ± 0.005 Å. The NiTiO3 and CoTiO3 pellets were placed in a vertical drop furnace in a small, hand-crafted basket made of platinum wire, were fired in air at 1,150°C for 24 h, then slowly cooled to 1,000°C for 24 h, and further cooled to 900°C and held for another 24 h. The samples were then rapidly drop-quenched in distilled water and dried at 110°C for 1 h. X-ray diffraction indicated CoTiO3 and NiTiO3 only, no impurities or other unreacted oxides were detected. Our synthetic CoTiO3 had cell parameters of a = 5.029 ± 0.004 and c = 13.79 ± 0.02 Å and the NiTiO3 sample had cell parameters of a = 5.061 ± 0.006 and c = 13.91 ± 0.08 Å which compares well with previous results [1].

Low-temperature calorimetry

The heat capacities were measured with a commercially available low temperature Quantum Design Physical Properties Measurement System (PPMS) at the University of Münster. The heat capacities were measured using the heat pulse method, measuring the response of the calorimeter to a heat pulse, which is evaluated as a function of time [32]. The accuracy of the method has been tested by several groups [33, 34] who found that the PPMS is capable of reproducing heat capacities of reference materials to better than 1% at T > 100 K and around 3-5% at T < 100 K. We have performed further tests using the Münster PPMS, coming to the identical conclusions. Our measurements on synthetic Al2O3 (NIST SRM-720, [35]) are depicted in Figure 1. The data show that we reproduce the heat capacity of SRM-720 to better than 1% (with an average of 0.4%) at temperatures higher than 90 K, and around 4% at T < 90 K. Overall, the standard entropy of NIST SRM-720 corundum was reproduced with our calorimeter within 0.8%, a value which is used to estimate the overall uncertainty of our calculated standard entropy values.
Figure 1

Comparison of published heat capacities of NIST SRM-720 (Ditmars et al. 1982) with PPMS measurements done at Münster University.

For the actual measurements, the sample pellets were fixed onto a pre-calibrated sample holder using Apiezon N-Grease. To compensate for the heat capacity and anomalies caused by the grease [36], addenda measurements were first performed without the sample. These heat capacity values were then subtracted from the sample measurement. Heat capacities were measured from below 5 to 303 K in increments that varied between 0.5 and 20 K at the highest temperatures (Figure 1; Tables 1, 2 and 3).
Table 1

Experimental Molar Heat Capacities for NiTiO3

K

J mol-1 K-1

K

J mol-1 K-1

K

J mol-1 K-1

K

J mol-1 K-1

K

J mol-1 K-1

T

Cp

T

Cp

T

Cp

T

Cp

T

Cp

2.70

0.02

51.0

7.45

163.1

59.1

274.7

88.7

21.0

15.2

3.24

0.05

53.0

8.21

165.1

59.9

276.7

89.1

21.6

16.6

3.78

0.09

55.0

9.01

167.2

60.6

278.7

89.4

22.1

18.6

4.32

0.18

57.1

9.81

169.2

61.3

280.7

89.8

22.6

13.9

4.84

0.29

59.1

10.6

171.2

62.0

282.7

90.0

23.0

6.4

5.37

0.45

61.2

11.5

173.3

62.8

284.8

90.3

23.6

4.8

5.90

0.65

63.2

12.3

175.3

63.5

286.8

90.6

24.1

4.0

6.43

0.88

65.3

13.2

177.3

64.3

288.8

91.0

24.6

3.5

6.95

1.15

67.3

14.2

179.3

64.9

290.9

91.3

25.2

3.2

7.45

1.44

69.4

15.1

181.4

65.6

292.9

91.6

25.7

3.0

7.98

1.77

71.4

16.1

183.4

66.3

294.9

91.9

26.2

2.8

8.20

1.91

73.4

17.1

185.4

66.9

296.9

92.1

26.7

2.7

9.20

2.60

75.5

18.2

187.4

67.7

299.0

92.4

27.3

2.6

10.2

3.35

77.5

19.2

189.5

68.3

301.0

92.5

27.8

2.5

11.2

4.14

79.6

20.3

191.5

69.0

303.1

92.7

28.3

2.5

12.2

4.97

81.6

21.4

193.5

69.6

  

28.8

2.5

13.2

5.84

83.6

22.5

195.6

70.3

Series 2

 

29.3

2.5

14.2

6.72

85.7

23.6

197.6

70.9

T

Cp

29.9

2.5

15.2

7.72

87.7

24.7

199.6

71.6

K

J mol-1 K-1

30.4

2.5

16.2

8.70

89.8

25.7

201.7

72.2

2.17

0.010

30.9

2.5

17.2

9.76

91.8

26.8

203.7

72.8

2.70

0.023

31.4

2.6

18.2

10.91

93.8

27.9

205.7

73.3

3.24

0.048

32.0

2.6

19.2

12.17

95.9

29.0

207.8

73.9

3.78

0.094

32.5

2.7

20.2

13.69

97.9

30.0

209.8

74.5

4.32

0.18

33.0

2.7

21.2

15.61

100.0

31.0

211.8

75.1

4.84

0.29

33.5

2.8

22.1

19.00

102.0

32.0

213.9

75.7

5.37

0.45

34.0

2.9

23.1

5.92

104.0

33.0

215.9

76.3

5.90

0.65

34.5

3.0

24.1

4.04

106.1

33.9

217.9

76.8

6.43

0.88

35.1

3.0

25.1

3.25

108.1

34.9

219.9

77.4

7.0

1.2

35.6

3.1

26.1

2.84

110.1

35.9

222.0

77.9

7.5

1.4

36.1

3.2

27.1

2.62

112.2

36.8

224.0

78.4

8.0

1.8

36.6

3.3

28.1

2.50

114.2

37.7

226.0

78.9

8.5

2.1

37.1

3.4

29.1

2.46

116.3

38.6

228.0

79.4

9.0

2.5

37.7

3.5

30.1

2.48

118.3

39.5

230.1

79.9

9.5

2.9

38.2

3.7

31.1

2.53

120.3

40.5

232.1

80.3

10.1

3.3

38.7

3.8

32.1

2.62

122.4

41.4

234.1

80.8

10.6

3.6

39.2

3.9

33.1

2.74

124.4

42.4

236.2

81.3

11.1

4.1

39.7

4.0

34.0

2.87

126.5

43.4

238.2

81.8

11.6

4.5

40.3

4.1

35.0

3.03

128.5

44.3

240.2

82.3

12.2

5.0

40.8

4.2

36.0

3.21

130.5

45.3

242.3

82.8

12.7

5.4

  

37.0

3.40

132.6

46.1

244.3

83.2

13.2

5.9

  

38.0

3.61

134.6

47.1

246.3

83.6

13.7

6.3

  

39.0

3.83

136.6

48.0

248.4

84.0

14.3

6.8

  

40.0

4.05

138.7

48.9

250.4

84.4

14.8

7.3

  

41.0

4.30

140.7

49.8

252.4

84.8

15.3

7.8

  

42.0

4.56

142.7

50.7

254.4

85.2

15.8

8.3

  

43.0

4.85

144.8

51.6

256.5

85.6

16.3

8.9

  

44.0

5.15

146.8

52.4

258.5

85.9

16.9

9.4

  

45.0

5.46

148.8

53.3

260.5

86.3

17.4

10.0

  

46.0

5.77

150.9

54.2

262.6

86.7

17.9

10.6

  

47.0

6.09

152.9

55.0

264.6

87.0

18.4

11.2

  

48.0

6.41

155.0

55.9

266.6

87.4

18.9

11.8

  

49.0

6.74

157.0

56.7

268.6

87.7

19.5

12.6

  

49.9

7.08

159.0

57.5

270.6

88.0

20.0

13.3

  

50.9

7.47

161.1

58.3

272.6

88.4

20.5

14.2

  
Table 2

Experimental Molar Heat Capacities for CoTiO3

K

J mol-1K-1

K

J mol-1K-1

K

J mol-1K-1

K

J mol-1K-1

K

J mol-1K-1

K

J mol-1K-1

T

C P

T

C P

T

C P

T

C P

T

C P

T

C P

2.17

0.002

95.0

34.89

127.2

49.74

155.3

61.01

8.15

0.093

46.7

9.6

3.92

0.006

96.7

35.78

127.7

49.95

155.8

61.22

9.14

0.15

47.2

9.8

5.65

0.022

98.3

36.62

128.2

50.17

156.3

61.40

10.12

0.22

47.8

10.0

7.34

0.065

100.0

37.42

128.7

50.37

156.8

61.56

11.1

0.31

48.3

10.1

9.04

0.131

101.6

38.00

129.3

50.62

157.3

61.79

12.1

0.43

48.8

10.3

10.8

0.286

101.7

38.25

129.8

50.85

157.8

61.92

13.1

0.58

49.3

10.5

12.4

0.491

102.2

38.49

130.3

51.07

158.3

62.13

14.1

0.75

49.8

10.7

14.2

0.774

102.7

38.73

130.8

51.24

158.9

62.31

15.1

0.95

50.3

10.9

15.8

1.14

103.2

39.01

131.3

51.46

159.4

62.47

16.0

1.17

50.9

11.1

17.5

1.59

103.7

39.22

131.8

51.70

159.9

62.67

17.0

1.42

51.4

11.4

19.2

2.11

104.2

39.47

132.3

51.89

160.4

62.85

18.0

1.70

51.9

11.6

20.9

2.73

104.8

39.73

132.8

52.12

160.9

63.01

19.0

2.01

52.4

11.8

22.6

3.44

105.3

39.95

133.3

52.35

161.4

63.20

20.0

2.35

52.9

12.0

24.3

4.23

105.8

40.18

133.8

52.58

161.9

63.33

20.9

2.71

53.4

12.3

26.0

5.11

106.3

40.45

134.3

52.80

162.4

63.34

21.9

3.11

53.9

12.5

27.7

6.11

106.8

40.69

134.9

52.96

162.4

63.46

22.9

3.55

54.5

12.7

29.3

7.18

107.3

40.91

135.4

53.19

167.3

65.01

23.9

4.02

55.0

13.0

31.0

8.38

107.8

41.17

135.9

53.42

172.2

66.53

24.9

4.49

55.5

13.2

32.7

9.77

108.3

41.38

136.4

53.61

177.0

68.01

25.8

5.00

56.0

13.5

34.4

11.32

108.8

41.63

136.9

53.83

181.9

69.38

26.8

5.54

56.5

13.7

36.1

13.20

109.3

41.86

137.4

54.11

186.8

70.68

27.8

6.11

57.0

14.0

37.6

14.08

109.9

42.07

137.9

54.30

191.6

72.00

28.8

6.77

57.6

14.2

39.4

10.69

110.4

42.32

138.4

54.48

196.5

73.31

29.7

7.38

58.1

14.5

41.1

9.24

110.9

42.52

138.9

54.73

201.4

74.40

30.6

7.82

58.6

14.7

42.8

8.97

111.4

42.75

139.5

54.88

206.2

75.52

30.7

8.12

59.1

14.9

44.5

9.13

111.9

42.96

140.0

55.10

211.1

76.59

31.2

8.50

59.6

15.2

46.2

9.51

112.4

43.16

140.5

55.34

216.0

77.77

31.8

8.91

60.1

15.4

47.9

10.02

112.9

43.41

141.0

55.54

220.8

78.73

32.3

9.33

60.6

15.7

49.6

10.64

113.4

43.58

141.5

55.76

225.7

79.58

32.8

9.75

61.2

15.9

51.3

11.31

113.9

43.77

142.0

55.97

230.5

80.34

33.3

10.2

  

52.9

12.05

114.5

43.99

142.5

56.16

235.4

81.07

33.8

10.7

  

54.6

12.84

115.0

44.20

143.0

56.35

240.3

81.96

34.3

11.2

  

56.3

13.62

115.5

44.44

143.5

56.51

245.2

82.62

34.8

11.7

  

58.0

14.43

116.0

44.67

144.0

56.73

250.0

83.15

35.4

12.3

  

59.7

15.21

116.5

44.89

144.6

56.95

254.9

83.70

35.9

13.0

  

61.4

16.04

117.0

45.14

145.1

57.15

259.8

84.11

36.4

13.8

  

63.0

16.88

117.5

45.35

145.6

57.36

264.6

84.53

36.9

14.5

  

64.7

17.75

118.0

45.59

146.1

57.55

269.4

85.05

37.4

14.6

  

66.4

18.62

118.5

45.79

146.6

57.71

274.3

85.48

37.9

13.8

  

68.1

19.51

119.1

46.06

147.1

57.93

279.1

85.82

38.4

12.6

  

69.8

20.41

119.6

46.26

147.6

58.11

284.0

86.18

38.9

11.5

  

71.5

21.33

120.1

46.49

148.1

58.31

288.8

86.29

39.4

10.7

  

73.1

22.33

120.6

46.74

148.6

58.52

293.7

86.52

40.0

10.0

  

74.8

23.30

121.1

46.99

149.2

58.75

298.6

86.80

40.5

9.6

  

76.5

24.26

121.6

47.21

149.7

58.92

304.3

90.15

41.0

9.3

  

78.2

25.27

122.1

47.45

150.2

59.13

  

41.5

9.1

  

79.9

26.29

122.6

47.70

150.7

59.31

Series 2

 

42.1

9.0

  

81.5

27.25

123.1

47.93

151.2

59.51

T

C P

42.6

9.0

  

83.2

28.24

123.6

48.14

151.7

59.69

K

J mol-1K-1

43.1

9.0

  

84.9

29.21

124.2

48.41

152.2

59.88

2.24

0.0018

43.6

9.0

  

86.6

30.21

124.7

48.62

152.7

60.06

3.19

0.0034

44.1

9.1

  

88.3

31.13

125.2

48.88

153.2

60.24

4.20

0.0085

44.7

9.2

  

89.9

32.06

125.7

49.07

153.7

60.44

5.20

0.0164

45.2

9.3

  

91.6

33.05

126.2

49.30

154.3

60.65

6.19

0.0285

45.7

9.4

  

93.3

33.99

126.7

49.49

154.8

60.86

7.21

0.0572

46.2

9.5

  
Table 3

Experimental Molar Heat Capacities for CoCO3

K

J mol-1K-1

K

J mol-1K-1

K

J mol-1K-1

K

J mol-1K-1

T

Cp

T

Cp

T

Cp

T

Cp

2.21

0.02

24.8

3.23

47.3

10.17

282.8

82.56

2.60

0.03

25.2

3.28

47.7

10.35

287.9

83.26

3.01

0.04

25.6

3.34

48.1

10.54

293.0

83.84

3.43

0.06

26.0

3.39

48.5

10.72

298.1

84.79

3.86

0.08

26.4

3.45

48.9

10.90

304.0

86.19

4.27

0.11

26.8

3.52

49.3

11.08

  

4.68

0.15

27.2

3.58

49.7

11.29

  

5.10

0.19

27.7

3.68

50.1

11.47

  

5.51

0.24

28.1

3.77

50.5

11.66

  

5.92

0.33

28.5

3.84

50.8

11.67

  

6.34

0.39

28.9

3.92

51.0

11.93

  

6.75

0.45

29.3

4.00

56.1

14.51

  

7.18

0.52

29.7

4.09

61.3

17.03

  

7.54

0.58

30.1

4.20

66.5

19.66

  

7.95

0.73

30.5

4.31

71.7

22.30

  

8.35

0.81

30.9

4.39

76.8

25.28

  

8.76

0.90

31.3

4.48

82.0

28.12

  

9.17

0.99

31.8

4.57

87.2

30.85

  

9.58

1.08

32.2

4.68

92.3

33.40

  

9.99

1.30

32.6

4.80

97.5

35.82

  

10.4

1.41

33.0

4.92

102.7

37.95

  

10.8

1.53

33.4

5.01

107.8

39.99

  

11.2

1.64

33.8

5.14

113.0

41.75

  

11.6

1.90

34.2

5.26

118.2

43.56

  

12.0

2.06

34.6

5.40

123.3

45.43

  

12.5

2.20

35.0

5.50

128.5

47.20

  

12.9

2.50

35.4

5.59

133.6

48.95

  

13.3

2.66

35.8

5.71

138.8

50.65

  

13.7

2.83

36.2

5.83

144.0

52.24

  

14.1

3.15

36.7

6.00

149.1

53.85

  

14.5

3.26

37.0

6.13

154.3

55.46

  

14.9

3.22

37.5

6.25

159.5

56.93

  

15.3

3.05

37.9

6.40

164.6

58.27

  

15.7

2.91

38.3

6.57

169.8

59.60

  

16.1

2.82

38.7

6.68

174.9

60.84

  

16.6

2.76

39.1

6.79

180.1

62.22

  

17.0

2.71

39.5

6.94

185.2

63.43

  

17.4

2.69

39.9

7.11

190.3

64.64

  

17.8

2.67

40.3

7.25

195.5

65.84

  

18.2

2.66

40.7

7.39

200.6

66.91

  

18.6

2.66

41.1

7.55

205.8

68.13

  

19.0

2.67

41.5

7.72

210.9

69.25

  

19.4

2.67

42.0

7.88

216.1

70.36

  

19.8

2.69

42.4

8.05

221.2

71.34

  

20.3

2.77

42.8

8.23

226.4

72.16

  

20.7

2.80

43.2

8.40

231.5

73.25

  

21.1

2.82

43.6

8.57

236.6

74.31

  

21.5

2.85

44.0

8.74

241.8

75.37

  

21.9

2.88

44.4

8.90

247.0

76.42

  

22.3

2.91

44.8

9.10

252.1

77.36

  

22.7

2.96

45.2

9.26

257.2

78.22

  

23.1

3.00

45.6

9.42

262.4

79.16

  

23.5

3.03

46.1

9.62

267.5

80.16

  

24.0

3.09

46.5

9.80

272.6

81.02

  

24.4

3.18

46.9

9.98

277.7

81.90

  

Results and Discussion

The experimental values for the low-temperature heat capacity of NiTiO3, CoTiO3 and CoCO3 are compiled in Tables 1, 2 and 3.

Figures 2, 3, and 4 depict the heat capacity of NiTiO3, CoTiO3 and CoCO3 as a function of temperature. The data for NiTiO3 and CoTiO3 were recorded in two scans, the first one ranging from about 1.5 to about 60 K, the other scan continuously up to room temperature. Figures 2 and 3 show excellent agreement between the two separate measurements. The data for CoCO3 were collected in only one scan, as only a broad low-temperature anomaly was found (Figure 4).
Figure 2

Low-temperature heat capacity data for NiTiO 3 . The insert shows results from two scans done at low temperatures.

Figure 3

Low-temperature heat capacity data for CoTiO 3 . The insert shows results from two scans done at low temperatures.

Figure 4

Low-temperature heat capacity data for CoCO 3 .

The standard entropies at 298.15 K (S298) were calculated from the CP data (using a T3 extrapolation to 0 K) and resulted in S298 = 90.9 ± 0.7 J mol-1 K-1 for NiTiO3, 94.4 ± 0.8 J mol-1 K-1 for CoTiO3 and 88.9 ± 0.7 J mol-1 K-1 for CoCO3 (Tables 4, 5 and 6). Our data for S298 are compared to previous results in Table 7. For CoCO3, our new data agree very well with more than 40 year old data [37]. However, our measured entropies do not agree well with estimated values [38], probably due to the fact that low temperature heat capacity anomalies occur in NiTiO3 and CoTiO3.
Table 4

Thermodynamic properties at selected temperatures for NiTiO3

K

J mol-1K-1

J mol-1 K-2

J mol-1 K-1

T

Cp

Cp/T

S (T)

300

92.4

0.308

91.5

298.15

92.3

0.309

90.9

290

91.2

0.314

88.4

280

89.7

0.320

85.2

270

87.9

0.326

82.0

260

86.2

0.332

78.7

250

84.3

0.337

75.3

240

82.2

0.343

71.9

230

79.9

0.347

68.5

220

77.4

0.352

65.0

210

74.5

0.355

61.4

200

71.7

0.358

57.9

190

68.5

0.360

54.3

180

65.1

0.362

50.7

170

61.6

0.362

47.1

160

57.9

0.362

43.4

150

53.8

0.359

39.8

140

49.5

0.354

36.3

130

45.0

0.346

32.8

120

40.3

0.336

29.3

110

35.8

0.325

26.0

100

31.0

0.310

22.9

90

25.9

0.287

19.9

80

20.5

0.257

17.1

70

15.4

0.220

14.8

60

11.0

0.183

12.7

50

7.11

0.142

11.1

40

4.05

0.101

9.89

30

2.48

0.083

9.01

20

13.4

0.672

6.03

15

7.53

0.502

3.13

10

3.20

0.320

1.05

5

4.15

0.830

0.080

Table 5

Thermodynamic properties at selected temperatures for CoTiO3

K

J mol-1K-1

J mol-1 K-2

J mol-1 K-1

T

Cp

Cp/T

S (T)

300

87.6

0.292

95.0

298.15

86.8

0.291

94.4

290

86.3

0.298

92.0

280

85.9

0.307

89.0

270

85.1

0.315

85.9

260

84.1

0.324

82.7

250

83.1

0.333

79.4

240

81.9

0.341

76.1

230

80.3

0.349

72.6

220

78.6

0.357

69.1

210

76.3

0.364

65.5

200

74.1

0.370

61.8

190

71.6

0.377

58.1

180

68.9

0.383

54.3

170

65.9

0.387

50.4

160

62.7

0.392

46.5

150

59.1

0.394

42.6

140

55.1

0.394

38.7

130

51.0

0.392

34.7

120

46.5

0.387

30.8

110

42.1

0.383

27.0

100

37.4

0.374

23.2

90

32.1

0.357

19.5

80

26.4

0.330

16.1

70

20.5

0.293

13.0

60

15.4

0.256

10.2

50

10.8

0.216

7.86

40

10.2

0.254

5.71

30

7.65

0.255

2.56

20

2.39

0.120

0.72

15

0.96

0.064

0.26

10

0.22

0.022

0.058

5

0.02

0.003

0.006

Table 6

Thermodynamic properties at selected temperatures for CoCO3

K

J mol-1K-1

J mol-1 K-2

J mol-1 K-1

T

Cp

Cp/T

S (T)

300

85.2

0.284

89.4

298.15

84.8

0.284

88.9

290

83.5

0.288

86.6

280

82.2

0.294

83.7

270

80.6

0.298

80.7

260

78.7

0.303

77.7

250

77.0

0.308

74.7

240

75.0

0.312

71.6

230

72.9

0.317

68.4

220

71.1

0.323

65.2

210

69.0

0.329

61.9

200

66.8

0.334

58.6

190

64.6

0.340

55.3

180

62.2

0.346

51.8

170

59.7

0.351

48.4

160

57.1

0.357

44.8

150

54.1

0.361

41.2

140

51.0

0.364

37.6

130

47.7

0.367

33.9

120

44.2

0.369

30.3

110

40.7

0.370

26.6

100

36.9

0.369

22.9

90

32.2

0.358

19.2

80

27.0

0.338

15.7

70

21.4

0.306

12.5

60

16.4

0.273

9.62

50

11.4

0.228

7.09

40

7.14

0.178

5.06

30

4.17

0.139

3.49

20

2.72

0.136

2.16

15

3.18

0.212

1.37

10

1.31

0.131

0.46

5

0.18

0.036

0.062

Table 7

Comparison of our data with previous results

NiTiO3

CoTiO3

CoCO3

reference

S (298.15)

S (298.15)

S (298.15)

 

J mol-1K-1

J mol-1K-1

J mol-1K-1

 

90.9(0.7)

94.4(0.8)

88.9(0.7)

this study

80.1(3.7)

96.9*

 

[38]

  

88.7(1.7)

[37]

Uncertainties given in brackets. * Note that the value for S298 for CoTiO3 reported in [38] did not contain uncertainties.

Our data for NiTiO3 show that a lambda-shaped low-temperature heat capacity anomaly occurs at around 26 K (Figure 2), coinciding with the antiferromagnetic transition [15, 16, 39]. In a similar fashion, CoTiO3 exhibits a low-temperature heat capacity anomaly peaking at 37 K, which is in excellent agreement with the old structural and magnetic data [18, 40]. In contrast, CoCO3 shows only a broad anomaly peaking at around 31 K (Figure 4), which may be caused by the transition to an antiferromagnetic state [9, 11, 12]. Our data agree well with a recent study [11] which found that the weak antiferromagnets (Co, Ni)CO3 exhibit magnetic ordering temperatures of well below 40 K. Whilst our data indicate a transition temperature of 31 K, the older magnetic susceptibility data [10] gave a transition temperature of 18 K. The reason for the discrepancy is unknown.

Conclusions

We present new low-temperature calorimetric data for the ilmenite-type oxides NiTiO3 and CoTiO3, and for the weak antiferromagnet CoCO3. Our data show that all three phases show low-temperature heat capacity anomalies peaking between 20 and 40 K. The calorimetric data are used to calculate standard molar entropies (298.15 K), which are, due to the low-temperature anomalies, significantly higher than those previously anticipated.

Declarations

Acknowledgements and Funding

We are indebted to V. Rapelius and A. Breit for their help with sample synthesis and characterization. Furthermore, our thanks go to two anonymous reviewers for their helpful and constructive reviews.

Authors’ Affiliations

(1)
Institut für Mineralogie, Westfälische-Wilhelms-Universität Münster
(2)
Institut für Anorganische und Analytische Chemie, Westfälische-Wilhelms-Universität Münster

References

  1. Baraton MI, Busca G, Prieto MC, Ricchiardi G, Escribano VS: On the vibrational-spectra and structure of FeCrO3 and of the ilmenite-type compounds CoTiO3 and NiTiO3. J Solid State Chem. 1994, 112: 9-14. 10.1006/jssc.1994.1256.View ArticleGoogle Scholar
  2. Chao TS, Ku WM, Lin HC, Landheer D, Wang YY, Mori Y: CoTiO3 high-kappa, dielectrics on HSG for DRAM applications. IEEE Trans Electr Dev. 2004, 51: 2200-2204. 10.1109/TED.2004.839880.View ArticleGoogle Scholar
  3. Chuang SH, Hsieh ML, Wu SC, Lin HC, Chao TS, Hou TH: Fabrication and Characterization of high-K dielectric nickel titanate thin films using a modified sol-gel method. J Am Ceram Soc. 2011, 94: 251-255.View ArticleGoogle Scholar
  4. Kang YM, Kim KT, Kim JH, Kim HS, Lee PS, Lee JY, Liu HK, Dou SX: Electrochemical properties of Co3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries. J Power Sources. 2004, 133: 252-259. 10.1016/j.jpowsour.2004.02.012.View ArticleGoogle Scholar
  5. Lerch M, Laqua W: Contributions to the properties of titanates with ilmenite structure 2. Study on the thermodynamics and the electrical-conductivity of NiTiO3 and other phases with ilmenite structure. Z Anorg Allg Chem. 1992, 610: 57-63. 10.1002/zaac.19926100110.View ArticleGoogle Scholar
  6. Arvanitidis I, Kapilashrami A, Du SC, Seetharaman S: Intrinsic reduction kinetics of cobalt- and nickel-titanates by hydrogen. J Mater Res. 2000, 15: 338-346. 10.1557/JMR.2000.0053.View ArticleGoogle Scholar
  7. Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F: Titania-supported cobalt and cobalt-phosphorus catalysts: Characterization and performances in ethane oxidative dehydrogenation. J Catal. 2001, 202: 118-128. 10.1006/jcat.2001.3262.View ArticleGoogle Scholar
  8. Voss A, Borgmann D, Wedler G: Characterization of alumina, silica, and titania supported cobalt catalysts. J Catal. 2002, 212: 10-21. 10.1006/jcat.2002.3739.View ArticleGoogle Scholar
  9. Alikhanov RA: Antiferromagnetism of CoCO3. Soviet Physics JETP-USSR. 1961, 12: 1029-1030.Google Scholar
  10. Borovik-Romanov AS, Ozhogin VI: Weak ferromagnetism in an antiferromagnetic CoCO3 single crystal. Soviet Physics JETP-USSR. 1961, 12: 18-24.Google Scholar
  11. Meshcheryakov VF: Crystal field and magnetization of canted antiferromagnet CoCO3. J Exp Theor Phys. 2007, 105: 998-1010. 10.1134/S106377610711012X.View ArticleGoogle Scholar
  12. Ozhogin VI: The Antiferromagnets CoCO3, CoF2, and FeCO3 in strong fields. Soviet Physics JETP-USSR. 1964, 18: 1156-1157.Google Scholar
  13. Birnbaum H, Scott RK: X-ray diffraction studies of the system-Zn2TiO4 NiTiO3. J Am Chem Soc. 1950, 72: 1398-1399.View ArticleGoogle Scholar
  14. Ishikawa Y, Sawada S: The study on substances having the ilmenite structure 1. Physical properties of synthesized FeTiO3 and NiTiO3 ceramics. J Phys Soc Jpn. 1956, 11: 496-501. 10.1143/JPSJ.11.496.View ArticleGoogle Scholar
  15. Shirane G, Pickart SJ, Ishikawa Y: Neutron diffraction study of antiferromagnetic MnTiO3 and NiTiO3. J Phys Soc Jpn. 1959, 14: 1352-1360. 10.1143/JPSJ.14.1352.View ArticleGoogle Scholar
  16. Heller GS, Stickler JJ, Kern S, Wold A: Antiferromagnetism in NiTiO3. J Appl Phys. 1963, 34: 1033-1035. 10.1063/1.1729357.View ArticleGoogle Scholar
  17. Kaczer J: Hexagonal anisotropy and magnetization curves of antiferromagnetic CoCO3. Soviet Physics JETP-USSR. 1963, 16: 1443-1448.Google Scholar
  18. Newnham RE, Santoro RP, Fang JH: Crystal structure and magnetic properties of CoTiO3. Acta Crystallogr. 1964, 17: 240-245. 10.1107/S0365110X64000615.View ArticleGoogle Scholar
  19. Rudashevskii EG: Antiferromagnetic resonance in CoCO3. Soviet Physics JETP-USSR. 1964, 19: 96-97.Google Scholar
  20. Lerch M, Boysen H, Neder R, Frey F, Laqua W: Neutron-scattering investigation of the high-temperature phase-transition in NiTiO3. J Phys Chem Solids. 1992, 53: 1153-1156. 10.1016/0022-3697(92)90032-9.View ArticleGoogle Scholar
  21. Busca G, Ramis G, Amores JMG, Escribano VS, Piaggio P: FT Raman and FTIR studies of titanias and metatitanate powders. J Chem Soc-Faraday Trans. 1994, 90: 3181-3190. 10.1039/ft9949003181.View ArticleGoogle Scholar
  22. Klemme S, Ahrens M: Low-temperature heat capacity of magnesioferrite (MgFe2O4). Phys Chem Miner. 2005, 32: 374-378. 10.1007/s00269-005-0003-8.View ArticleGoogle Scholar
  23. Klemme S, Neill HSO, Schnelle W, Gmelin E: The heat capacity of MgCr2O4, FeCr2O4, and Cr2O3 at low temperatures and derived thermodynamic properties. Am Mineral. 2000, 85: 1686-1693.View ArticleGoogle Scholar
  24. Klemme S, van Miltenburg JC: Thermodynamic properties of nickel chromite (NiCr2O4) based on adiabatic calorimetry at low temperatures. Phys Chem Miner. 2002, 29: 663-667. 10.1007/s00269-002-0280-4.View ArticleGoogle Scholar
  25. Klemme S, Van Miltenburg JC: Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperatures. Am Mineral. 2003, 88: 68-72.View ArticleGoogle Scholar
  26. Klemme S, Van Miltenburg JC: The entropy of zinc chromite (ZnCr2O4). Mineral Mag. 2004, 68: 515-522. 10.1180/0026461046830202.View ArticleGoogle Scholar
  27. Klemme S, van Miltenburg JC: The heat capacities and thermodynamic properties of NiAl2O4 and CoAl2O4 measured by adiabatic calorimetry from T = (4 to 400) K. J Chem Thermod. 2009, 41: 842-848. 10.1016/j.jct.2009.01.014.View ArticleGoogle Scholar
  28. Manon MRF, Dachs E, Essene EJ: Low T heat capacity measurements and new entropy data for titanite (sphene): implications for thermobarometry of high-pressure rocks. Contr Mineral Petrol. 2008, 156: 709-720. 10.1007/s00410-008-0311-3.View ArticleGoogle Scholar
  29. Dachs E, Geiger CA, Withers AC, Essene EJ: A calorimetric investigation of spessartine: Vibrational and magnetic heat capacity. Geochim Cosmochim Acta. 2009, 73: 3393-3409. 10.1016/j.gca.2009.03.011.View ArticleGoogle Scholar
  30. Klemme S, van Miltenburg JC, Javorsky P, Wastin F: Thermodynamic properties of uvarovite garnet (Ca3Cr2Si3O12). Am Mineral. 2005, 90: 663-666. 10.2138/am.2005.1812.View ArticleGoogle Scholar
  31. OrtegaSanMartin L, Williams AJ, Gordon CD, Klemme S, Attfield JP: Low temperature neutron diffraction study of MgCr2O4 spinel. J Physics: Condens Matter. 2008, 20: 104238-10.1088/0953-8984/20/10/104238.Google Scholar
  32. Hwang JS, Lin KJ, Tien C: Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter. Rev Sci Instr. 1997, 68: 94-101. 10.1063/1.1147722.View ArticleGoogle Scholar
  33. Dachs E, Bertoldi C: Precision and accuracy of the heat-pulse calorimetric technique: low-temperature heat capacities of milligram-sized synthetic mineral samples. Eur J Mineral. 2005, 17: 251-259. 10.1127/0935-1221/2005/0017-0251.View ArticleGoogle Scholar
  34. Lashley JC, Hundley MF, Migliori A, Sarrao JL, Pagliuso PG, Darling TW, Jaime M, Cooley JC, Hults WL, Morales L, et al: Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics. 2003, 43: 369-378. 10.1016/S0011-2275(03)00092-4.View ArticleGoogle Scholar
  35. Ditmars DA, Ishihara S, Chang SS, Bernstein G, West ED: Enthalpy and heat-capacity standard reference material: synthetic sapphire (alpha-Al2O3) from 10 to 2250 K. J Res Nat Bur Stand (USA). 1982, 87: 159-163.View ArticleGoogle Scholar
  36. Schnelle W, Engelhardt J, Gmelin E: Specific heat capacity of Apiezon N high vacuum grease and of Duran borosilicate glass. Cryogenics. 1999, 39: 271-275. 10.1016/S0011-2275(99)00035-1.View ArticleGoogle Scholar
  37. Kostryukov VN, Kalinkina IN: Heat capacity and entropy for manganese, iron, cobalt, and nickel carbonates at low temperatures. Russ J Phys Chem. 1964, 38: 780-781.Google Scholar
  38. Kubaschewski O: The thermodynamic properties of double oxides. High Temp High Pressure. 1972, 4: 1-12.Google Scholar
  39. Ishikawa Y: Magnetic properties of NiTiO3-Fe2O3 solid solution series. J Phys Soc Jpn. 1957, 12: 1165-1165. 10.1143/JPSJ.12.1165.View ArticleGoogle Scholar
  40. Ishikawa Y, Akimoto S: Magnetic property and crystal chemistry of ilmenite (MeTiO3) and hematite (alpha-Fe2O3) system 2. Magnetic property. J Phys Soc Jpn. 1958, 13: 1298-1310. 10.1143/JPSJ.13.1298.View ArticleGoogle Scholar

Copyright

© Klemme et al 2010